Skip to main content
Log in

Influence of Optical Illumination on the Electric Impedance of Composite Nanostructures Based on p-GaSe Layered Semiconductor with 3D Nanodimensional Inclusions of KNO3 Ferroelectric

  • Published:
Russian Physics Journal Aims and scope

An Erratum to this article was published on 23 October 2014

Impedance spectra of GaSe<KNO3> composite nanostructures are investigated in the dark and under their light illumination. It is established that the processes of accumulation and transfer of charge carriers in these structures are determined by the strain-induced interaction between 3D nanodimensional pyramidal ferroelectric inclusions and the layered GaSe matrix. Sharp changes in the conductivity and capacitance of the structures are observed in the impedance spectrum at low frequencies. A dependence of the impedance spectra on the constant voltage applied to the structures under their light illumination is associated with the quantumsize effects observed for nanoscale crystal deformations due to the manifestation of the effect of electron flexoelectric coupling on bended nanodimensional regions of its layers through which the vertical transport of charge carriers takes place. Substantial increase in the electric capacitance of the composite nanostructures is established under their illumination. This phenomenon is caused by screening of spontaneous polarization of nanodimensional ferroelectric inclusions by nonequilibrium charge carriers at the interfaces between the inclusions and the GaSe matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Kalinin, A. N. Morozovska, L. Q. Chen, et al., Rep. Prog. Phys., 73, No. 5, 056502(1)-056502(67) (2010).

    Article  ADS  Google Scholar 

  2. B. J. Rodriguez, S. Jesse, M. Alexe, et al., Adv. Mater., 20, No. 1, 109–114 (2008).

    Article  Google Scholar 

  3. V. M. Fridkin, R. V. Gainutdinov, and S. Dyusharm, Usp. Fiz. Nauk, 180, No. 1, 209–217 (2010).

    Article  Google Scholar 

  4. M. D. Glinchuk, E. A. Eliseev, and A. N. Morozovska, Ukr. J. Phys. Rev., 5, No. 1, 34–60 (2009).

    Google Scholar 

  5. M. D. Glinchuk, V. Ya. Zaulichnyi, and V. A. Stefanovich, Fiz. Tverd. Tela, 47, No. 7, 1285–1292 (2005).

    Google Scholar 

  6. I. I. Grigorchak, V. V. Netyaga, I. D. Koz’mik, et al., Pis’ma Zh. Tekh. Fiz., 15, No. 24, 87–90 (1989).

    Google Scholar 

  7. I. I. Grigorchak, V. V. Netyaga, and Z. D. Kovalyuk, J. Phys.: Condens. Mater., 9, No. 12, L191–L195 (1997).

    ADS  Google Scholar 

  8. S. I. Drapak, A. P. Bakhtinov, S. V. Gavrylyuk, et al., Superlat. Microst., 44, Nos. 4–5, 563–570 (2008).

    Article  Google Scholar 

  9. A. I. Dmitriev, V. V. Vishnyak, G. V. Lashkarev, et al., Fiz. Tverd. Tela, 53, No. 3, 579–589 (2011).

    Google Scholar 

  10. V. G. Lytovchenko, M. V. Strikha, and M. I. Klyui, Ukr. J. Phys., 56, No. 2, 175–178 (2011).

    Google Scholar 

  11. G. A. Malygin, Usp. Fiz. Nauk, 169, No. 9, 979–1010 (1999).

    Article  Google Scholar 

  12. S. V. Kalinin and V. Meunier, Phys. Rev., B77, No. 3, 033403(1)–033403(4) (2008).

    ADS  Google Scholar 

  13. V. S. Mashkevich and K. B. Tolpygo, Zh. Eksp. Teor. Fiz., 31, No. 3, 520–525 (1957).

    Google Scholar 

  14. A. P. Bakhtinov, V. N. Vodop’yanov, Z. D. Kovalyuk, et al., Fiz. Tekh. Poluprovodn., 45, No. 3, 348–359 (2011).

    Google Scholar 

  15. J. Y. Fu, W. Zhu, N. Li, et al., Appl. Phys. Lett., 91, No. 18, 182910(1)–182910(3) (2007).

    Article  ADS  Google Scholar 

  16. W. Zhu, J. N. Fu, N. Li, et al., Appl. Phys. Lett., 89, No. 19, 192904(1)–192904(3) (2006).

    Article  ADS  Google Scholar 

  17. A. Ya. Shik, L. G. Bakueva, S. F. Musikhin, et al., Physics of Low-Dimensional Systems [in Russian], Nauka, Saint Retersburg (2001).

    Google Scholar 

  18. A. P. Bakhtinov, V. N. Vodop’yanov, V. V. Netyaga, et al., Fiz. Tekh. Poluprovodn., 46, No. 3, 356–368 (2012).

    Google Scholar 

  19. A. P. Bakhtinov, V. N. Vodop’yanov, E. I. Slyn’ko, et al., Pis’ma Zh. Tekh. Fiz., 33, No. 2, 80–88 (2007).

    Google Scholar 

  20. G. L. Belen’kii, V. A. Goncharov, V. D. Negrii, et al., Fiz. Tverd. Tela, 26, No. 10, 3144–3149 (1984).

    Google Scholar 

  21. A. Yu. Zavrazhnov and D. N. Turchen, Kond. Sredy Mezhfazn. Gran., 1, No. 2, 190–196 (1999).

    Google Scholar 

  22. T. Hidaka and K. Oka, Phys. Rev., B42, No. 13, 8295–8304 (1990).

    Article  ADS  Google Scholar 

  23. L. M. Viculis, J. J. Mack, O. M. Mayer, et al., J. Mater. Chem., 15, No. 9, 974–978 (2005).

    Article  Google Scholar 

  24. Z. D. Kovalyuk, A. P. Bakhtinov, V. N. Vodop’yanov, et al., in: Carbon Nanomaterials in Clean Energy Hydrogen Systems, B. Baranowski, S. Yu. Zaginaichenko, D. V. Schur, et al., eds., Springer, Netherlands (2009), pp. 765–777.

    Chapter  Google Scholar 

  25. B. Parkinson, J. Am. Chem. Soc., 112, No. 21, 7498–7502 (1990).

    Article  Google Scholar 

  26. I. V. Mintyanskii, I. I. Grigorchak, Z. D. Kovalyuk, et al., Fiz. Tverd. Tela, 28, No. 4, 1263–1265 (1986).

    Google Scholar 

  27. J. F. Scott and C. A. Paz de Araujo, Science, 246, No. 4936, 1400–1405 (1989).

    Article  ADS  Google Scholar 

  28. J. Y. Li, Q. G. Du, and S. Ducharme, J. Appl. Phys., 104, No. 9, 094302(1)–094302(7) (2008).

    ADS  Google Scholar 

  29. A. P. Bakhtinov, V. N. Vodop’yanov, Z. D. Kovalyuk, et al., Fiz. Tekh. Poluprovodn., 44, No. 2, 180–193 (2010).

    Google Scholar 

  30. B. Korenblum and E. I. Rashba, Phys. Rev. Lett., 89, No. 9, 096803(1)–096803(4) (2002).

    Article  ADS  Google Scholar 

  31. J. C. C. Abrantes, J. A. Labrincha, and J. R. Frade, Mater. Res. Bull., 35, No. 5, 727–740 (2000).

    Article  Google Scholar 

  32. N. S. Bagdassarov and N. Delepine, J. Phys. Chem. Solids, 65, Nos. 8–9, 1517–1526 (2004).

    Article  ADS  Google Scholar 

  33. J. F. Scott, M. Zhang, R. Bruce, et al., Phys. Rev., B35, No. 8, 4044–4051 (1987).

    Article  ADS  Google Scholar 

  34. P. Poprawski, E. Rysiakiewicz-Pasek, A. Sieradzki, et al., J. Non-Cryst. Solids, 353, Nos. 47–51, 4457–4461 (2007).

    Article  ADS  Google Scholar 

  35. A. Sieradzki, J. Komar, E. Rysiakiewicz-Pasek, et al., Ferroelectrics, 402, No. 1, 60–65 (2010).

    Article  Google Scholar 

  36. S. V. Baryshnikov, E. V. Charnaya, A. Yu. Milinskii, et al., Fiz. Tverd. Tela, 54, No. 3, 594–599 (2012).

    Google Scholar 

  37. M. J. Westphal, J. Appl. Phys., 74, No. 10, 6107(1)–6107(8) (1993).

    Article  ADS  Google Scholar 

  38. N. Kumar and R. Nath, Ferroelectrics, 329, No. 1, 85–89 (2005).

    Article  Google Scholar 

  39. A. L. Pirozerskii, E. V. Charnaya, Fiz. Tverd. Tela, 52, No. 3, 572–576 (2010).

    Google Scholar 

  40. S. V. Baryshnikov, E. V. Charnaya, A. Yu. Milinskii, et al., Fiz. Tverd. Tela, 52, No. 2, 365–369 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 70–84, May, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtinov, A.P., Vodop’yanov, V.N., Kovalyuk, Z.D. et al. Influence of Optical Illumination on the Electric Impedance of Composite Nanostructures Based on p-GaSe Layered Semiconductor with 3D Nanodimensional Inclusions of KNO3 Ferroelectric. Russ Phys J 57, 642–656 (2014). https://doi.org/10.1007/s11182-014-0287-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-014-0287-6

Keywords

Navigation