Skip to main content
Log in

Influence of Effects of Self-Polarization and Exciton-Phonon Interactions on the Exciton Energy in Lead Iodide Nanofilms

  • Published:
Russian Physics Journal Aims and scope

In the approximation of effective masses for electronic and phononic – dielectric continuum – systems, the influence of spatial bounding, self-polarization, and exciton-phonon interactions on the exciton state in a flat double nanoheterostructure (a nanofilm) – lead iodide in a polymer matrix –is theoretically investigated for the model of a single infinitely deep quantum well. It is demonstrated that the dominating factor determining the energy of the bottom of the ground exciton band and its binding energy is spatial bounding. The relationship between two other effects depends on the nanofilm thickness, namely, the influence of the self-polarization effect in ultrathin films significantly exceeds that of exciton-phonon interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Fornaro, E. Saucedo, L. Mussio, et al., Proc. SPIE, 4507, 90–98 (2001).

    Article  ADS  Google Scholar 

  2. M. S. Brodin and I. V. Blonski, Exciton Processes in Layered Crystals [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  3. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Springer Verlag, Berlin; New York (1997).

    Book  MATH  Google Scholar 

  4. R. Zheng and M. Matsuura, Phys. Rev., B57, 1749–1761 (1998); B61, 9960–9963 (2000).

  5. R. T. Senger and K. K. Bajaj, Phys. Stat. Sol., B241, 1896–1900 (2004).

    Article  ADS  Google Scholar 

  6. I. V. Ponomarev, L. I. Deych, V. A. Shuvayev, and A. A. Lisyansky, Physica, E25, 539–553 (2005).

    Article  ADS  Google Scholar 

  7. V. M. Kramar and M. V. Tkach, Ukr. J. Phys., 54, 1027–1035 (2009).

    Google Scholar 

  8. A. Yamamoto, H. Nakahara, S. Yano, et al., Phys. Stat. Sol., B224, 301–305 (2001).

    Article  ADS  Google Scholar 

  9. N. Preda, L. Mihut, I. Baltog, et al., J. Optoelectr. Adv. Mater., 8, 309–313 (2006).

    Google Scholar 

  10. Z. D. Kovalyuk, O. A. Politanskaya, O. N. Sidor, and V. T. Maslyuk, Fiz. Tekh. Poluprovodn., 42, 1321–1326 (2008).

    Google Scholar 

  11. M. Kumagai and T. Takagahara, Phys. Rev., B40, 12359–12381 (1989).

    Article  ADS  Google Scholar 

  12. M. Shinada and S. Sugano, J. Phys. Soc. Jpn., 21, 1936–1946 (1966).

    Article  Google Scholar 

  13. D. B. Tran Thoai, R. Zimmerman, M. Grudman, and D. Bimberg, Phys. Rev., B42, 5906–5909 (1990).

    Article  ADS  Google Scholar 

  14. N. Mori and T. Ando, Phys. Rev., B40, 6175–6188 (1989).

    Article  ADS  Google Scholar 

  15. J. A. Brogan and C. C. Berndt, Polymer Eng. Sci., 38, 1873–1881 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kramar.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 110–116, April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramar, V.M., Pugantseva, O.V. Influence of Effects of Self-Polarization and Exciton-Phonon Interactions on the Exciton Energy in Lead Iodide Nanofilms. Russ Phys J 57, 545–553 (2014). https://doi.org/10.1007/s11182-014-0273-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-014-0273-z

Keywords

Navigation