Skip to main content
Log in

Structure Fragmentation in a Subsurface Nickel Titanium Layer Caused by its Irradiation with Pulsed Silicon ion Fluxes

  • Published:
Russian Physics Journal Aims and scope

Using the methods of electron backscatter diffraction, an investigation of variations in microstructure of the subsurface nickel titanium layer after its irradiation with pulsed, medium-energy silicon ion fluxes is performed. It is shown that following this ion-beam irradiation of the specimen surfaces, the subsurface-layer structure changes and undergoes fragmentation down to as deep as 5–15 μm, which is smaller than the average grain size of the initial alloy. It is found out that the fragmented-structure layer is characterized by the presence of a martensitic В19′ phase and a high concentration of interfaces and grain boundaries; the linear dimensions of the fragments exceed 1 μm, the structure refinement in the layer below the irradiated surface is nonuniform and depends on crystallographic orientation of the initial grain. A reason for intensive fragmentation of individual grains of the initial B2 phase after ion-beam treatment is assumed to be the proximity of the orientation axes of the principal slip planes to that of the incident ion beam flux. This might have resulted in an earlier, compared to other grains, onset of plastic deformation in these grains and, as a result, partial fragmentation of their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Kornilov, O. K. Belousov, and E. V. Kachur, Nickel Titanium and other Shape-Memory Alloys, [in Russian], Moscow, Nauka (1977).

    Google Scholar 

  2. A. I. Lotkov, V. N. Khachin, V. N. Grishkov, et al., Physical Mesomechanics and Computer Design of Materials, Volume 2 [in Russian] (Eds. V. E. Panin, P. V. Makarov, S. G. Psahie, et al.), Novosibirsk, Nauka (1995).

  3. N. D. Tomashov, T. N. Ustinskaya, and T. V. Chukalovskaya, Zashita Met., 19, 584–586 (1983).

    Google Scholar 

  4. S. A. Muslov, Application of Shape-Memory Alloys in Science, Technology and Medicine [in Russian], Moscow, Folium (2007).

    Google Scholar 

  5. S. Miyazaki, Shape Memory Materials (Eds. K. Otsuka and C. M. Wayman), Cambridge, CUP (1998).

  6. V. E. Panin, V. P. Sergeev, A. V. Panin, and Yu. I. Pochivalov, The Phys. Met. Metallogr., 104, No. 6, 650–660 (2007).

    Article  Google Scholar 

  7. V. G. Pushin, A. I. Lotkov, Yu. R. Kolobov, et al., The Phys. Met. Metallogr., 106, No. 5, 537–547 (2008).

    Article  Google Scholar 

  8. A. P. Dyupin, N. N. Kuranova, V. G. Pushin, and R. Z. Valiev, Bull. Russ. Acad. Sci.Physics, 72, No. 4, 583–585 (2008).

    Article  Google Scholar 

  9. Surface Nanoengineering. Formation of Nonequilibrium States by Electron-Ion-Plasma Technologies (Exe. Eds. N. Z. Lyakhov and S. G. Psahie), Novosibirsk, Publ. SB RAS (2008).

  10. F. F. Komarov, Ion Implantation in Metals [in Russian], Moscow, Metallurgiya (1990).

    Google Scholar 

  11. K. K. Kadyrzhanov, F. F. Komarov, A. D. Pogrebnyak, et al., Ion-Beam and Ion-Plasma Modification of Materials [in Russian], Moscow, MSU Publ. (2005).

    Google Scholar 

  12. F. V. Nolfi, Phase Transformations during Irradiation, Elsevier Science Ltd. (1983).

  13. F. F. Komarov, A. P. Novikov, V. S. Soloviev, and S. Yu. Shiryaev, Structure Defects in Ion-Implanted Silicon [in Russian], Minsk, Minsk Uni.Publ. (1990).

    Google Scholar 

  14. N. P. Morozov and D. I. Tetelbaum, Semicond., 17, Issue 3, 838–842 (1983).

  15. D. I. Tetelbaum, V. P. Sorvina, E. V. Kurilchik, et al., Bull. Russ. Acad. Sci.Physics, 60, No. 4, 210–212 (1996).

    Google Scholar 

  16. B. Predel, Thermodynamic Properties & Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys (Ed. O. Madelung), Springer Verlag (1998). – V. 5 J. Book–DOI: 10.1007/b60148, Chapter–DOI:10.1007/10551312_2737,–P1-4.

  17. S. A. Firstov, S. V. Tkachenko, and N. N. Kuzmenko, J. Met. Science Heat Treat., No. 1, 14–20 (2009).

  18. D. S. Groman, S. P. Foks, and S. L. Niyakana, Titanium alloy with improved corrosion resitance and strength, RU Patent 2418086. C22 (C14/00), of 14.09.2006.

  19. H. Gleiter, Progress Mater. Sci., 33, 223–315 (1989).

    Article  Google Scholar 

  20. N. A. Koneva and E. V. Kozlov, Russ. Phys. J., 34, No. 3, 34–46 (1991).

    Google Scholar 

  21. R. W. Siegel, Proc. of the NATO ASI «Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructures» (Eds. M. Nastasi, D. M. Parkin, H. Gleiter), Dordrecht, Boston, London, Kluwer Head. Publ. (1993).

  22. R. Z. Valiev et al., Prog. Mater. Sci., 45, 103–189 (2000).

    Article  Google Scholar 

  23. R. Z. Valiev and I.V. Aleksandrov, Nanostrutured Materials produced by Severe Plastic Deformation [in Russian], Moscow, Logos (2000).

    Google Scholar 

  24. V. E. Panin and V. E. Egorushkin, Phys. Mesomech., 11, Issue 5, 5–16 (2008).

  25. A. D. Korotaev, A. N. Tyumentsev, M. V. Tretyak, et al., The Phys. Met. Metallogr., 89, No. 1, 54–61 (2000).

    Google Scholar 

  26. L. L. Meisner, V. P. Sivokha, A. I., Lotkov and L. S. Derevyaginaб Physica B, 307, Nos. 1–4, 251–257 (2001).

    Article  ADS  Google Scholar 

  27. L. L. Meisner, A. I. Lotkov, V. P. Sivokha, et al., Fiz. Khim. Obrabot. Mater., No. 1, 78–84 (2003).

  28. L. L. Meisner, A. I. Lotkov, V. A. Matveeva, et al., Special Issue on “Modification, Synthesis, and Analysis of Advanced Materials Using Ion Beam Techniques”, Hindawi Publishing Corporation (2012); Adv. Mater. Sci. Eng., 2012, (2012). Article ID 706094, 16 pages doi:10.1155/2012/706094.

  29. Oxford Instruments HKL Technology CHANNEL 5. – HKL Technology (2006).

  30. W. Biihrer, R. Gotthardt, A. Kulik, et al. , J. Phys. F: Met. Phys., 13, L77–L81 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Meisner.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 108–115, March, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meisner, S.N. Structure Fragmentation in a Subsurface Nickel Titanium Layer Caused by its Irradiation with Pulsed Silicon ion Fluxes. Russ Phys J 57, 403–410 (2014). https://doi.org/10.1007/s11182-014-0253-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-014-0253-3

Keywords

Navigation