Skip to main content
Log in

Effect of the Graded-Gap Layer Composition on the Formation of n + –n –p Structures in Boron-Implanted Heteroepitaxial Cd x Hg1–x Te Layers

  • Published:
Russian Physics Journal Aims and scope

Processes of formation of n+–n–p-structures in boron-implanted heteroepitaxial (HEL) CdxHg1–xTe (CMT) layers of p-type grown by molecular beam epitaxy (HEL CMT MBE) with different compositions of the upper graded-gap layer are studied. It is shown that the surface composition (xs) of HEL CMT MBE significantly affects both the electrical parameters of the implanted layer and the spatial distribution of radiation defects of donor type. For HEL CMT MBE with the small surface composition xs = 0.22–0.33, it is found that the layer electron concentration (Ns) is decreased after saturation with accumulation of radiation defects, as the dose of B+ ions is increased in the range of D = 1⋅1011−3⋅1015 сm–2. An increase of the surface composition up to xs = 0.49−0.56 results in a significant decrease in Ns and a disappearance of the saturation of concentration in the whole dose range. The value of Ns monotonically increases with the energy (E) of boron ions and composition xs. It is found that for B+-ion energies E = 20−100 keV, the depth of the surface n+-layer increases with increasing energy and exceeds the total projected path of boron ions. However, in the energy range E = 100–150 keV, the depth of n+-layer stops increasing with the increase of the surface composition. The depth (dn) of a lightly doped n-layer monotonically decreases with increasing energy of boron ions in the entire range of E = 20–150 keV. With increasing dose (D) of B+ ions in the interval D = 1⋅1014−1⋅1015сm−2, deep n-layers with dn = 4−5 μm are formed only in the HEL CMT MBE with xs = 0.22−0.33. For the samples with xs = 0.49−0.56, the depth changes in the interval dn = 1.5−2.5 μm. At D ≤ 3⋅1013сm–2, n+–n–p-structure is not formed for all surface compositions, if implantation is performed at room temperature. However, implantation at T = 130°C leads to the formation of a deep n-layer. Planar photodiodes with the n–p-junction area of А = 35×35 μm2 made on the basis of the boron implanted HEL CMT MBE with the surface compositions xs = 0.33−0.56 had high differential resistance Rd = 3⋅106−107 Ω∙cm2 and high product R0 Aeff = 9.0−20.7 Ω∙cm2, where Aeff is the effective area of the charge carrier collecting. The values of Rd and R0 Aeff increased with increasing xs. It is found that the layer electron concentration in the boron implanted HEL CMT MBE with different surface compositions is increased, when exposed to normal conditions for a few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Photodetectors based on the Cadmium–Mercury–Tellurium Epitaxial System [in Russian], Izd. SO RAN, Novosibirsk (2012).

  2. A. Rogal’skii, Infrared Detectors [Russian translation], Nauka, Novosibirsk (2003).

    Google Scholar 

  3. V. I. Stafeev, K. O. Boltar’, I. D. Burlakov, et al., Fiz. Tekh. Poluprovodn., 39, No. 10, 1257– 1265 (2005).

    Google Scholar 

  4. V. N. Ovsyuk, G. L. Kuryshev, Yu. G. Sidorov, et al., Matrix Infrared Photodetectors, Ch. 3 [in Russian], Nauka, Novosibirsk (2001).

    Google Scholar 

  5. V. N. Ovsyuk, G. L. Kuryshev, Yu. G. Sidorov, et al., Matrix Infrared Photodetectors, Ch. 2 [in Russian], Nauka, Novosibirsk (2001).

    Google Scholar 

  6. A. V. Voitsekhovskii, Yu. A. Denisov, A. P. Kokhanenko, et al., Avtometriya, No. 4, 47–58 (1998).

  7. V. V. Vasil’ev, D. G. Esaev, A. F. Kravchenko, et al., Fiz. Tekh. Poluprovodn., 49, No. 7, 877–880 (2000).

    Google Scholar 

  8. С. Е. Mallon, В. А. Green, R. E. Leadon, and J. А. Naber, IEEE Trans. Nucl. Sci., NS-22, No. 6, 228–2288 (1975).

    Google Scholar 

  9. A. C. Foyt, T. C. Harman, and J. P. Donnelly, Appl. Phys. Lett.,18, No. 8, 321–323 (1971).

    Article  ADS  Google Scholar 

  10. L. O. Bubulac, W. E. Tennant, R. A. Riedel, and T. J. Magee, J. Vac. Sci. Technol., 21, Nо. 1, 251–254 (1982).

    Article  ADS  Google Scholar 

  11. G. L. Destefanis, R. Boch, and R. Roussille, J. Cryst. Growth, 59, 270–275 (1982).

    Article  Google Scholar 

  12. L. O. Bubulac, W. E. Tennant, D. S. Lo, et al., J. Vac. Sci. Technol., A5, No. 5, 3166–3170 (1987).

    Article  ADS  Google Scholar 

  13. G. L. Destefanis, J. Cryst. Growth, 89, 700–722 (1988).

    Google Scholar 

  14. L. O. Bubulac, J. Cryst. Growth, 86, 723–734 (1988).

    Article  Google Scholar 

  15. O. Gravrand, E. De Borniol, S. Bisotto, et al., J. Electr. Mater., 36, No. 8, 981–987 (2007).

    Article  ADS  Google Scholar 

  16. N. Kh. Talipov, Formation of n-Type Layers at Radiation-Thermal Treatment of p-Cd x Hg1–x Te Crystals, Cand. Sci. (Phys.-Math.) Dissertation, Novosibirsk (1994).

  17. V. N. Ovsyuk and N. Kh. Talipov, Prikladn. Fiz., No. 5, 87–92 (2003).

  18. A. V. Voitsekhovskii, D. V. Grigor’ev, A. G. Korotaev, et al., Prikladn. Fiz., No. 5, 93–95 (2003).

  19. A. V. Voitsekhovskii, D. V. Grigor’ev, A. G. Korotaev, et al., Izv. Vyssh. Uchebn. Zaved. Mater. Electron. Tekh., No. 2, 60–65 (2004).

  20. A. V. Voitsekhovskii, D. V. Grigor’ev, A. G. Korotaev, et al., Prikladn. Fiz., No. 3, 83–88 (2005).

  21. A. V. Voitsekhovskii, D. V. Grigor’ev, A. G. Korotaev, et al., Proceed. Intern. Sci. Tech. Conf. High Technologies in Industry of Russia (Materials and Devices of Functional Electronics and Photonics, OAO TsNTI “Tekhnomash”, Moscow (2005).

  22. D. V. Grigor’ev, Radiation Defect Formation at Ion Implantation in Graded-Gap Semiconductor Cd x Hg1–x Te Structures Grown by Molecular Beam Epitaxy, Cand. Sci. (Phys.-Math.) Dissertation, Tomsk (2005).

  23. A. V. Voitsekhovskii, A. G. Korotaev, A. P. Kokhanenko, et al., Russ. Phys. J., 49, No. 9, 929–933 (2006).

    Article  Google Scholar 

  24. A. V. Voitsekhovskii, A. G. Korotaev, A. P. Kokhanenko, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 49, No. 9, Appl., 142–145 (2006).

    Google Scholar 

  25. A. V. Voitsekhovskii, A. G. Korotaev, A. P. Kokhanenko, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 49, No. 10, Appl., 389–391 (2006).

    Google Scholar 

  26. A. V. Voitsekhovskii, A. G. Korotaev, A. P. Kokhanenko, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 49, No. 10, Appl., 392–394 (2006).

    Google Scholar 

  27. A. V. Voitsekhovskii, D. V. Grigor’ev, A. G. Korotaev, et al., Izv. Vyssh. Uchebn. Zaved. Mater. Electron. Tekh., No. 2, 35–40 (2007).

  28. A. V. Voitsekhovskii, A. G. Korotaev, A. P. Kokhanenko, et al., Prikladn. Fiz., No. 6, 119–123 (2007).

  29. A. V. Voitsekhovskii, D. V. Grigor’ev, N. Kh. Talipov, Russ. Phys. J., 51, No. 10, 1001–1015 (2008).

    Article  Google Scholar 

  30. A. V. Voitsekhovskii, V. S. Volkov, D. V. Grigor’ev, et al., Russ. Phys. J., 51, No. 9, 936–942 (2008).

    Article  Google Scholar 

  31. M. Pociask, I. I. Izhnin, S. A. Dvoretsky, et al., Semicond. Sci. Techn., 25, No. 6, 065012–065016 (2010).

    Article  ADS  Google Scholar 

  32. O. I. Fitsych, A. V. Voitsekhovskii, D. V. Grigor’ev, et al., Nucl. Instrum. Methods Phys. Res. B, 272, 313–317 (2012).

    Article  ADS  Google Scholar 

  33. A. V. Voitsekhovskii and N. Kh. Talipov, Izv. Vyssh. Uchebn. Zaved. Mater. Electron. Tekh., No. 4, 32–41 (2011).

  34. A. V. Voitsekhovskii, M. S. Nikitin, N. Kh. Talipov, Russ. Phys. J., 56, No. 5, 599–604 (2013).

    Article  Google Scholar 

  35. A. V. Voitsekhovskii and N. Kh. Talipov, Russ. Phys. J., 56, No. 7, 763–777 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kh. Talipov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 54–67, March, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talipov, N.K., Voitsekhovskii, А.V. & Grigor’ev, D.V. Effect of the Graded-Gap Layer Composition on the Formation of n + –n –p Structures in Boron-Implanted Heteroepitaxial Cd x Hg1–x Te Layers. Russ Phys J 57, 345–358 (2014). https://doi.org/10.1007/s11182-014-0246-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-014-0246-2

Keywords

Navigation