Skip to main content
Log in

Influence of the electrophysical processes in the discharge circuit on the energy characteristics of a copper vapor laser

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

The influence of the electrode arrangement in the gas-discharge tube (GDT) on the electrophysical processes in the discharge circuit is considered. The equivalent GDT circuit and the mechanism of its transformation depending on the electrode arrangement in the cold buffer or hot discharge channel zones are designed. The breakdown mechanism at the GDT channel ends is considered. It is demonstrated that the breakdown can be considered as the time moment since which the voltage is redistributed between the GDT ends and the active medium in favor of the last. A high relaxation rate of metastable copper atom states in the near afterglow is caused by ionization electron cooling in the active medium. In this case, the energy stored in the reactive components of the discharge circuit impedance during this time period is dissipated in the cold buffer zones. The energy is dissipated in the cold buffer zones until the time when the plasma resistance at the discharge channel ends reaches the value starting from which the duct capacitive components of the GDT shunt the cold buffer zones. As a result, a high-frequency circuit is formed, and the energy is further dissipated in the active medium. This reduces the relaxation rate of the metastable states during the time period between pulses and determines the characteristic bend in the time dependence of the metastable state population density determining the time moment of forming the high-frequency circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Petrash, Usp. Fiz. Nauk, 105, 645 (1971).

    Google Scholar 

  2. A. A. Isaev, M. A. Kazaryan, and G. G. Petrash, Pis’ma Zh. Eksp. Teor. Fiz., 16, No. 1, 40 (1972).

    Google Scholar 

  3. V. M. Batenin V. M, Buchanov, M. A. Kazaryan, et al. Lasers on Self-Terminating Transitions of Metal Atoms [in Russian], Nauchnaya Kniga, Moscow (1998).

    Google Scholar 

  4. C. E. Litlle, Metal Vapour Lasers. Physics, Engineering and Application, John Wiley & Sons, New York (1999).

    Google Scholar 

  5. A. A. Isaev, V. T. Michelsoo, G. G. Petrash, et al., Kvant. Elektron., 15, No. 12, 2510 (1988).

    Google Scholar 

  6. Yu. A. Piotrovskii, N. M. Reutova, and Yu. A. Tolmachev, Opt. Spektrosk., 7, No. 1, 99 (1984).

    Google Scholar 

  7. R. J. Carman, D. J. W. Brown, and J. A. Piper, IEEE J. Quant. Electron., 30, No. 8, 1876 (1994).

    Article  ADS  Google Scholar 

  8. N. A. Yudin, V. M. Klimkin, and V. E. Prokop’ev, Kvant. Elektron., 28, No. 3, 273 (1999).

    Google Scholar 

  9. P. A. Bokhan, V. I. Silant’ev, and V. I. Solomonov, Kvant. Elektron., 7, No. 7, 1264 (1980).

    Google Scholar 

  10. P. A. Bokhan and V. A. Gerasimov, Kvant. Elektron., 6, No. 3, 451 (1979).

    Google Scholar 

  11. P. A. Bokhan, D. È. Zakrevskii, and M. A. Lavrukhin, Kvant. Elektron., 39, 911 (2009).

    Article  ADS  Google Scholar 

  12. A. G. Grigor’yants, M. A. Kazaryan, and N. A. Lyabin, Copper Vapor Laser. Design, Characteristics, and Applications [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  13. G. P. Hogan and C. E. Webb, Opt. Commun., 117, No. 5, 570 (1995).

    Article  ADS  Google Scholar 

  14. K. I. Zemskov, A. A. Isaev, and G. G. Petrash, Kvant. Elektron., 27, No. 2, 183 (1999).

    Google Scholar 

  15. G. S. Evtushenko, I. D. Kostyrya, V. B. Sukhanov, et al., Kvant. Elektron., 31, No. 8, 704 (2001).

    Article  ADS  Google Scholar 

  16. N. A. Yudin, V. B. Sukhanov, F. A. Gubarev, and G. S. Evtushenko, Kvant. Elektron., 38, No. 1, 23 (2008).

    Article  ADS  Google Scholar 

  17. N. A. Yudin, F. A. Gubarev, and V. B. Sukhanov, Izv. Vyssh. Uchebn. Zaved., Fiz., 53, No. 5/2, 41 (2010).

    Google Scholar 

  18. N. A. Yudin, Izv. Vyssh. Uchebn. Zaved. Fiz., 53, No. 5/2, 113 (2010).

    Google Scholar 

  19. N. A. Yudin, Kvant. Elektron., 30, No. 7, 583 (2000).

    Article  ADS  Google Scholar 

  20. P. Baille, C. Jen-Shih, A. Claude, et al., J. Phys., B14, 1485 (1981).

    ADS  Google Scholar 

  21. Yu. P. Raiser, Gas Discharge Physics [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  22. N. A. Yudin, Opt. Atm. Okeana, 14, No. 11, 1022 (2001).

    MathSciNet  Google Scholar 

  23. C. E. Webb and G. P. Hogan, in: Proc. NATO Advanced Research Workshop on Pulsed Metal Vapor Lasers – Physic and Emerging Applications in Industry, Medicine and Science, C. E. Little and N. V. Sabotinov, eds., Kluwer Academic Publishers, Dordrecht (1996), p. 29.

    Google Scholar 

  24. V. M. Batenin, V. A. Burmakin, P. A. Vokhmin, et al., Kvant. Elektron., 4, No. 7, 1572 (1977).

    Google Scholar 

  25. V. F. Elaev, V. S. Mel’chenko, V. V. Pozdeev, and A. N. Soldatov, in: Effective Gas-Discharge Metal Vapor Lasers, P. A. Bokhan, ed., [in Russian], Publishing House of the Institute of Atmospheric Optics of the SB RAS, Tomsk (1978), p. 179.

    Google Scholar 

  26. V. M. Batenin, V. A. Burmakin, P. A. Vokhmin, et al., Teplofiz. Vysok. Temp., 16, No. 6, 976 (1979).

    Google Scholar 

  27. A. V. Eletskii and B. M. Smirnov, Usp. Fiz. Nauk, 136, No. 1, 25 (1982).

    Article  Google Scholar 

  28. W. H. Kasner, Phys. Rev., 167, 148 (1968).

    Article  ADS  Google Scholar 

  29. L. G. D’yachkov and G. A. Kobzev, Zh. Tekh. Fiz., 48, 2343 (1978).

    Google Scholar 

  30. V. A. Kelman, I. I. Klimovskii, A. N. Konoplev, et al., Kvant. Elektron., 11, 2191 (1984).

    Google Scholar 

  31. I. Smilanski, in: Proc. Int. Conf. Lasers’79, V. G. Corcoran, ed., Orlando (1979), p. 327.

  32. F. Ya. Litvinenko, V. I. Kravchenko, and A. N. Egorov, Kvant. Elektron., 10, No. 6, 1212 (1983).

    Google Scholar 

  33. P. A. Bokhan and D. È. Zakrevskii, Kvant. Elektron., 32, No. 7, 602 (2002).

    Article  ADS  Google Scholar 

  34. D. È. Zakrevskii, A. I. Moshkunov, G. G. Rakhimov, and N. A. Yudin, in: Abstract of Reports Presented at the 5th All-Russian (with International Participation) Scientific Conference “Physical and Chemical Processes during Selection of Atoms and Molecules” [in Russian], Zvenigorod (2000), p. 102.

  35. I. I. Klimovskii and L. A. Selezneva, Teplofiz. Vysok. Temp., 17, No. 1, 27 (1979).

    Google Scholar 

  36. A. A. Isaev and G. Yu. Lemmerman, in: Lasers on Metal Vapors and Their Halogenides, Vol. 181 [in Russian], Nauka, Moscow (1987), p. 164.

    Google Scholar 

  37. V. F. Elaev, A. N. Soldatov and N. A. Yudin, Opt. Atmos. Okeana, 9, No. 2, 169 (1996).

    Google Scholar 

  38. A. S. Skripnitenko, A. N. Soldatov, and N. A. Yudin, J. Rus. Laser Res., 16, No. 2, 134 (1995).

    Article  Google Scholar 

  39. M. A. Kazaryan, N. A. Lyabin, A. N. Soldatov, and N. A. Yudin, J. Rus. Laser Res., 26, No. 5, 373 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Yudin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 93–102, September, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudin, N.A., Tret’yakova, M.R. & Yudin, N.N. Influence of the electrophysical processes in the discharge circuit on the energy characteristics of a copper vapor laser. Russ Phys J 55, 1080–1090 (2013). https://doi.org/10.1007/s11182-013-9925-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-9925-7

Keywords

Navigation