Skip to main content
Log in

The surface alloying effect of silicon in a binary NiTi-base alloy on the corrosion resistance and biocompatibility of the material

  • Published:
Russian Physics Journal Aims and scope

The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by aqueous solutions of NaCl (artificial body fluid) and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ∼3400 and ∼6000 h, respectively (for the artificial plasma solution, a nearly 20-fold decrease in the Ni concentration is observed.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Salmerón-Sánchez and G. Altankov, in: Advances in Regenerative Medicine: Role of Nanotechnology and Engineering Principles, Springer, Dordrecht, the Netherlands (2010) pp. 3–15.

    Google Scholar 

  2. G. Altankov, T. Groth, E. Engel, et al., in: Advances in Regenerative Medicine: Role of Nanotechnology and Engineering Principles, Springer, Dordrecht, the Netherlands (2010) pp. 19–41.

    Chapter  Google Scholar 

  3. G. Mani, M. D. Feldman, D. N. Patel, and C. M. Agrawal, Biomater., 28, 1689–1710 (2007).

    Article  Google Scholar 

  4. A. Mahapatro, D. M. Johnson, D. N. Patel, et al., Langmuir: the ACS J. Surf. & Colloids, 22, No. 3, 901–905 (2006).

    Article  Google Scholar 

  5. O. N. Lazarenko, Praktikal Angiologiya, 7, No. 2, 42–49 (2007).

    Google Scholar 

  6. I. I. Kornilov, O. K. Belousov, and E. V. Kachur, Titanium Nickelide and Other Alloys with the Shape Memory Effect [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  7. A. I. Lotkov, V. N. Khachin, V. N. Grishkov, et al., in: Physical Mesomechanics and Computer-Aided Design of Materials [in Russian], vol. 2 (1995), pp. 202–213.

  8. V. N. Zhuravlev and V. G. Pushin, Alloys with Thermomechanical Memory and Their Application in Medicine [in Russian], The Urals Branch of the Russian Academy of Sciences, Ekaterinburg (2000).

    Google Scholar 

  9. D. Stoeckel, A. Pelton, and T. Duerig, Eur Radiol., 2, No. 14, 292–301 (2004).

    Article  Google Scholar 

  10. L. L. Meisner, Fiz. Mesomekh., 7, Special issue. Part 2, 169–172 (2004).

    Google Scholar 

  11. A. I. Lotkov, L. L. Meisner, and V. N. Grishkov, Fiz. Met. Metalloved., 99, No. 2, 1–13 (2005).

    Google Scholar 

  12. L. L. Meisner, A. I. Lotkov, V. A. Matveeva, et al., Adv. Mater. Sci. Eng., 2012, Article ID 706094, 1–16 (2012).

    Article  Google Scholar 

  13. L. L. Meisner, V. A. Matveeva, A. I. Lotkov, et al., Izv. Vyssh. Uchebn. Zav., Fiz., 54, No. 9/2, 39–51 (2011).

    Google Scholar 

  14. E. V. Vladimirskaya, O. A. Mayorova, S. A. Rumyantsev, and A. G. Rumyantsev, Biological Fundamentals and Prospects of Stem Cell Therapy [in Russian], Medpraktika, Moscow (2005) pp. 74–102.

    Google Scholar 

  15. F. M. Shemyakin, A. N. Karpov, and A. N. Brusen, Analytical Chemistry [in Russian], Vysshaya Shkola, Moscow (1965).

    Google Scholar 

  16. V. P. Shakhov, I. A. Khlusov, G. Ts. Dambaev, et al., Introduction to Methods of Cell Culture and Organ and Tissue Bioengineering [in Russian], STT, Tomsk (2004) pp. 340–349.

    Google Scholar 

  17. T. Mosmann, J. Immunol. Methods, 65, 55–63 (1983).

    Article  Google Scholar 

  18. N. A. Plokhinskii, Biometry [in Russian], MGU Press, Moscow (1970).

    Google Scholar 

  19. B. D. Ratner and A. S. Hoffman, in: Biomaterials Science: an Introduction to Materials in Medicine, B. D. Ratner et al., eds., 2-nd ed., Elsevier Academic Press, город, страна? (2004) pp. 201–218.

  20. A. G. Akimov, Zashchita Met., ХХII, No. 6, 879–886 (1986).

    Google Scholar 

  21. T. N. Ustinskaya, N. D. Tomashov, and E. N. Lubnik, Elektrokhimiya [in Russian], No.23, 254–259 (1987).

  22. L. L. Meisner, V. P. Sivokha, A. I. Lotkov, and E. G. Barmina, Fiz. Khim. Obrab. Mater., No. 1, 78–84 (2006).

  23. S. A. Shabalovskaya, Tian He, J. W. Andregg, et al., Biomater., 30, No. 4, 468–477 (2009).

    Article  Google Scholar 

  24. S. A. Firstov, S. V. Tkachenko, and N. N. Kuzmenko, Metalloved., Termich. Obrab. Met., No. 1, 14–20 (2009).

  25. J. L. Murray, in: Phase Diagrams of Binary Titanium Alloys, ASM, Metals Park, Ohio (1987) pp. 289–293.

    Google Scholar 

  26. F. F. Komarov, Ion Implantation into Metals [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  27. R. Goyer, Cassarett and Doull’s Toxicology, C. Klassen, M. Amdun, and J. Doul, eds., Macmillan, New York (1986), pp. 582–635.

    Google Scholar 

  28. A. L. Yarosh, A. A. Dolzhikov, A. V. Soloshenko, et al., Med. Nauki, No. 10, 186–189 (2011).

  29. J. H. Kim, J. H. Shin, D. H. Shin, et al., Br. J. Radiol., 999, No. 84, 210–215 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Meisner.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 78–87, September, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Psakhie, S.G., Lotkov, A.I., Meisner, L.L. et al. The surface alloying effect of silicon in a binary NiTi-base alloy on the corrosion resistance and biocompatibility of the material. Russ Phys J 55, 1063–1073 (2013). https://doi.org/10.1007/s11182-013-9923-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-9923-9

Keywords

Navigation