Skip to main content
Log in

Thermophoresis of Ultrafine and Nanosized Particles

  • Condensed-State Physics
  • Published:
Russian Physics Journal Aims and scope

It is shown that thermophoresis of ultrafine and nanosized particles can be calculated using an ideal gas model in a single-velocity Clausius approximation. An application of the classical approach allows determining the particle velocity and the force generated by the gas phase in the case where a temperature gradient is present in it. A good agreement with the available experimental data is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Brin’, S. P. Fisenko, and A. I. Shnip, Zh. Tekh. Fiz., 78, Issue 9, 41–45 (2008).

    Google Scholar 

  2. S. P. Fisenko, and A. I. Shnip, Physics, Chemistry and Applications of Nanostructures (Eds. V. E. Gaponenko and V. S. Gurin), Singapore, World Scientific (2003).

  3. S. P. Fisenko, Inzh. Fiz. Zh., 83, No. 1, 11–14 (2010).

    Google Scholar 

  4. A. G. Bashkirov, J. Theor. Math. Phys., 49, No. 1, 149–144 (1981).

    MathSciNet  Google Scholar 

  5. V. Ya. Rudyak and S.L. Krasnolutskii, Zh. Tekh. Fiz., 80, Issue 8, 49–52 (2010).

    Google Scholar 

  6. S. P. Fisenko and Yu. A. Khodyko, Zh. Tekh. Fiz., 82, Issue 3, 23–29 (2012).

    Google Scholar 

  7. Z. R. Gorbis and F. E. Spokoinyi, Teplofiz. Vysok. Temper., 15, No. 2, 399– 408 (1977).

    ADS  Google Scholar 

  8. Yu. V. Valtsyferov and S. M. Muradyan, Teplofiz. Vysok. Temper., 22, No. 6, 1152–1157 (1977).

    Google Scholar 

  9. S. P. Bakanov, Usp. Fiz. Nauk, 162, No. 9, 133–152 (1992).

    Article  Google Scholar 

  10. V. P. Redchits and Yu. I. Yalamov [in Russian], Bull. Moscow Region State University. Ser. Physics – Mathematics, No. 1, 3–8 (2008).

  11. S. P. Bakanov, J. Appl. Math. Mechanics, 69, No. 5, 855–860 (2005).

    MathSciNet  MATH  Google Scholar 

  12. L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, J. Fluid Mechan., 101, No. 4, 737–758 (1980).

    Article  ADS  Google Scholar 

  13. A. I. Potekaev, A. M. Bubenchikov, and M. A. Bubenchikov, Russ. Phys. J., 55, No. 12, 341–348 (2012).

    MathSciNet  Google Scholar 

  14. E. A. Chernova, A. E. Turetskii, G. N. Lipatov, and N. Kh. Kopyt, Physics of Airdispersed Systems: Interdepartmental collected works [in Russian], Odessa, The I. I. Mechnikov Odessa National University (2009).

    Google Scholar 

  15. F. Prodi and G. Santacihara, J. Aerosol Sci., 10, No. 4, 421–425 (1979).

    Article  Google Scholar 

  16. A. I. Storozhilova and G. I. Scherbina, Dokl. Akad. Nauk USSR, 217, No. 2, 386–389 (1974).

    Google Scholar 

  17. L. Waldmann, Rarefied Gas Dynamics (Ed. L. Talbot), N. Y., Academic Press (1961).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bubenchikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 57–61, July, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubenchikov, M.A., Potekaev, A.I. & Bubenchikov, A.M. Thermophoresis of Ultrafine and Nanosized Particles. Russ Phys J 56, 785–790 (2013). https://doi.org/10.1007/s11182-013-0100-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0100-y

Keywords

Navigation