Skip to main content
Log in

Methodology of Laser Detection of Engine Exhaust Gases

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

An engineering technique for determining the thermodynamic parameters of a high-temperature gas volume is described on an example of water vapor. The suggested approach consists in exact calculation of the attenuation of the intensity of several laser lines in the gas volume for fixed intervals of temperature and partial pressure with the subsequent approximation of the transmission function depending on the thermodynamic parameters of the medium. The polynomial coefficients so obtained are then used to solve the inverse gas analysis problem for unknown partial pressures of gaseous components of the medium and its temperature. The technique is suitable for simultaneous remote monitoring of the gas temperature (from 400 to 1600 K) and partial pressure (from 0.025 to 0.2 atm) with an error no more than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Z. Kriksunov, Handbook on Principles of Infrared Technology [in Russian], Radio i Svyaz’, Moscow (1978).

    Google Scholar 

  2. S. C. Schmidt, Technical Report LA-UR-99-2961, OSTI ID 785073 (1999).

  3. J. Heland and K. Schäfer, Atm. Envir., 32, No. 18, 3067–3072 (1998).

    Article  Google Scholar 

  4. K. Schäfer, J. Heland, D. H. Lister, et al., Appl. Opt., 39, No. 3, 441–455 (2000).

    Article  ADS  Google Scholar 

  5. K. Schäfer, Air & Space Europe, 3, Nos. 1–2, 104–108 (2001).

    Article  Google Scholar 

  6. K. Schäfer, P. Wagner, S. Emeis, et al., Proc. SPIE, 8534, ID 853409 (2012).

  7. K. Schäfer, C. Jahn, P. Sturm, et al., Atm. Envir., 37, No. 37, 5261–5271 (2003).

    Article  Google Scholar 

  8. K. Schäfer, K. Brockmann, J. Heland, et al., Appl. Opt., 44, No. 11, 2189–2201 (2005).

    Article  ADS  Google Scholar 

  9. G. Schürmann, K. Schäfer, C. Jahn, et al., Atm. Envir., 41, 103–118 (2007).

    Article  Google Scholar 

  10. M. E. Antipin and O. K. Voitsekhovskaya, Russ. Phys. J., 44, No. 4, 331–338 (2001).

    Article  Google Scholar 

  11. O. K. Voitsekhovskaya and M. E. Antipin, Opt. Atm. Okeana, 15, No. 10, 878–882 (2002).

    Google Scholar 

  12. O. K. Voitsekhovskaya, A. V. Voitsekhovskii, and A. Yu. Zapryagaev, Russ. Phys. J., 51, No. 5, 544–550 (2008).

    Article  Google Scholar 

  13. O. K. Voitsekhovskaya, A. V. Voitsekhovskii, D. E. Kashirskii, and I. S. Suslova, J. Opt. Tech., 77, No. 9, 37–44 (2010).

    Google Scholar 

  14. A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, et al., Opt. Atm. Okeana, 25, No. 8, 702–707 (2012).

    Google Scholar 

  15. O. G. Buzykin, S. V. Ivanov, A. A. Ionin, et al., Opt. Atm. Okeana, 14, No. 5, 400–407 (2001).

    Google Scholar 

  16. O. G. Buzykin, A. A. Ionin, S. V. Ivanov, et al., Proc. SPIE, 4644, 193–200 (2002).

    Article  ADS  Google Scholar 

  17. O. G. Buzykin, S. V. Ivanov, A. A. Ionin, et al., Izv. Ross. Akad. Nauk. Ser. Fizich., 66, No. 7, 962–967 (2002).

    Google Scholar 

  18. S. V. Ivanov, A. A. Ionin, A. A. Kotkov, et al., Proc. SPIE, 5149, 161–168 (2003).

    Article  Google Scholar 

  19. S. V. Ivanov, A. A. Ionin, A. A. Kotkov, et al., Khim. Fiz., 23, No. 8, 62–70 (2004).

    Google Scholar 

  20. O. G. Buzykin, S. V. Ivanov, A. A. Ionin, et al., J. Rus. Laser Res., 26, No. 5, 402–426 (2005).

    Article  Google Scholar 

  21. S. V. Ivanov, Phys. Wave Phenom., 15, No. 1, 57–65 (2007).

    Article  ADS  Google Scholar 

  22. O. K. Voitsekhovskaya, D. V. Volkov, D. E. Kashirskii, and V. S. Korchikov, Quant. Electron., 42, No. 7, 634–639 (2012).

    Article  ADS  Google Scholar 

  23. M. A. Bol’shov, Yu. A. Kuritsyn, V. V. Liger, and V. R. Mironenko, Opt. Spektrosk., 110, No. 6, 900–908 (2011).

    Google Scholar 

  24. W. Boyes, ed., Instrumentation Reference Book, Elsevier Inc., Oxford (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Voitsekhovskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 48–56, June, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voitsekhovskaya, O.K., Volkov, D.V. & Kashirskii, D.E. Methodology of Laser Detection of Engine Exhaust Gases. Russ Phys J 56, 657–666 (2013). https://doi.org/10.1007/s11182-013-0082-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0082-9

Keywords

Navigation