Skip to main content
Log in

Ab Initio Study of Thermodynamic Properties of Lithium, Sodium, and Potassium Sulfates

  • Published:
Russian Physics Journal Aims and scope

The thermodynamic parameters of lithium, sodium, and potassium single and double sulfate crystals are determined by the method of ab initio calculation of a linear combination of atomic orbitals in the gradient approximation of density functional theory using the software package CRYSTAL09 within the framework of the quasi-harmonic approximation of the Debye theory. It is demonstrated that the standard entropies and heat capacities as well as the temperature dependences are in satisfactory agreement with the available experimental data. The average frequency, Debye temperature, and thermal conductivity coefficient increase with external pressure, whereas the Gruneisen parameter decreases. The dependences of the potentials of free and internal energies on the temperature and volume are expressed through the Birch–Murnaghan equation of state and a square-law dependence on these parameters of their vibrational components. The thermodynamic parameters of lithium-potassium sulfate appear closer to potassium sulfate, whereas for sodium-potassium, they lie between the corresponding parameters for single compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Aleksandrov and B. V. Beznosikov, Structural Phase Transitions in Crystals (from the Potassium Sulfate Family) [in Russian], Nauka, Novosibirsk (1993).

    Google Scholar 

  2. I. N. Flerov, A. V. Kartashev, and V. A. Grankina, Fiz. Tverd. Tela, 47, No. 4, 696 (2005).

    Google Scholar 

  3. B. M. Suleiman, M. Gustavsson, E. Karawacki, and A. Lund’en, J. Phys., D30, 2553 (1997).

    ADS  Google Scholar 

  4. A. El-Rahman, M. M. El-Desoky, and A. A. El-Sharkawy, J. Phys. Chem. Sol., 60, 119 (1999).

    Article  ADS  Google Scholar 

  5. B. M. Suleiman, A. Lunde’n, and E. Karawacki, Solid State Ionics, 136–137, 325 (2000).

    Article  Google Scholar 

  6. M. E. Kassem, S. H. Kandil, E. F. El-Wahidy, and M. El-Gamal, Rev. Phys. Appl., 19, 445 (1984).

    Article  Google Scholar 

  7. L. Abello and C. Pommier, J. Chem. Therm., 17, No. 11, 1023 (1985).

    Article  Google Scholar 

  8. A. G. Nord, Acta Cryst., B32, 982 (1976).

    Article  Google Scholar 

  9. F. McGinnety, Acta Cryst., B28, 2845 (1972).

    Article  Google Scholar 

  10. K. Tanaka, H. Naruse, H. Morikawa, and F. Marumo, Acta Cryst., B47, 581 (1991).

    Article  Google Scholar 

  11. C. B. Pinheiro, M. A. Pimenta, G. Chapuis, and N. L. Speziali, Acta Cryst., B56, 607 (2000).

    Article  Google Scholar 

  12. K. Okada and J. Ossaka, Acta Cryst., B36, 919 (1980).

    Article  Google Scholar 

  13. O. V. Golovko, L. V. Zhuravleva, and Yu. N. Zhuravlev, Russ. Phys. J., 50, No. 1, 101 (2007).

    Google Scholar 

  14. R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL 06 User’s Manual, University of Torino, Torino (2009).

    Google Scholar 

  15. J. P. Perdew and Y. Wang, Phys. Rev., B45, 13244 (1992).

    Article  ADS  Google Scholar 

  16. M. Corno, C. Busco, B. Civalleri, and P. Ugliengo, Phys. Chem. Chem. Phys., 8, 2464 (2006).

    Article  Google Scholar 

  17. B. Civalleri, A. M. Ferrari, M. Llunell, et al., Chem. Mater., 15, 3996 (2003).

    Article  Google Scholar 

  18. F. Birch, J. Geophys. Res., 83, 1257 (1978).

    Article  ADS  Google Scholar 

  19. A. M. Molodets, Fiz. Gor. Vzryva, 31, No. 5, 132 (1995).

    Google Scholar 

  20. A. M. Hofmeister, Proc. Nat. Acad. Sci., 104, No. 22, 9192 (2007).

    Article  ADS  Google Scholar 

  21. N. de Koker, Earth Planet. Sci. Lett., 292, 392 (2010).

    Article  ADS  Google Scholar 

  22. D. Liu, H. M. Lu, J. R. Hardy, and F. G. Ullman, Phys. Rev., B44, No. 14, 7387 (1991).

    Article  ADS  Google Scholar 

  23. D. Liu, H. M. Lu, F. G. Ullman, and J. R. Hardy, Phys. Rev., B43, No. 7, 6202 (1991).

    Article  ADS  Google Scholar 

  24. J. Mata, X. Solans, M. T. Calvet, et al., J. Phys.–Condens. Matter, 14, 5211 (2002).

    Article  ADS  Google Scholar 

  25. R. Murugan, A. Ghule, and H. Chang, J. Phys.–Condens. Matter, 12, 677 (2000).

    Article  ADS  Google Scholar 

  26. D. Teeters and R. Frech, Phys. Rev., B26, No. 8, 4132 (1982).

    Article  ADS  Google Scholar 

  27. F. E. Bernardin and W. S. Hammack, Phys. Rev., B54, No. 10, 7026 (1996).

    Article  ADS  Google Scholar 

  28. Z. Wu, E. Zhao, H. Xiang, et al., Phys. Rev., B76, No. 054115 (2007).

  29. Internet resource: http://www.update.uu.se/~jolkkonen/pdf/CRC_TD.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Zhuravlev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 31–38, June, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuravlev, Y.N., Bugaeva, I.A. & Zhuravleva, L.V. Ab Initio Study of Thermodynamic Properties of Lithium, Sodium, and Potassium Sulfates. Russ Phys J 56, 638–646 (2013). https://doi.org/10.1007/s11182-013-0079-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0079-4

Keywords

Navigation