Skip to main content
Log in

High-Temperature Plastic Deformation and Acoustic Emission of Aluminum in a Low-Stability State

  • Published:
Russian Physics Journal Aims and scope

It is found out that under conditions of high-temperature mechanical loading of aluminum in a low-stability state, deformation is manifested as discrete macroscopic changes. An analysis of the activation energy of the temperature-dependent deformation and acoustic emission demonstrates that the period of deformation buildup is accompanied by the diffusion-controlled processes, giving rise to a stepwise accumulation of deformation and quasi-periodic transmission of high-amplitude acoustic-emission signals. The activation volume of an elementary deformation event is increasing exponentially with temperature, indicating an increased scale level of cooperative atomic displacements and formation of a local low-stability state or crystal-lattice instability. The macroscopic manifestation of the sharp deformation change (jump) serves as an evidence of correlation between the elementary events of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Nakanishi, in: Shape Memory Effects in Alloys (Ed. J. Perkins), Plenum Press, New York (1975).

    Google Scholar 

  2. K. Mukherjee, M. Chandrasekaran, and F. Milillo, in: Shape Memory Effects in Alloys (Ed. J. Perkins), Plenum Press, New York (1975).

    Google Scholar 

  3. S. V. Makarov, V. A. Plotnikov, and A. I. Potekaev, Russ. Phys. J., 54, No. 3, 47–54 (2011).

    Article  Google Scholar 

  4. V. P. Regel, A. I. Slutzker, and E E. Tomashevskii, Kinetic Nature of Strength of Solids [in Russian], Moscow, Nauka (1974).

    Google Scholar 

  5. A. I. Slutzker, A. I. Mikhailin, and I. A. Slutzker, Usp. Fiz. Nauk, 164, No. 4, 357–366 (1994).

    Article  Google Scholar 

  6. A. I. Potekaev and V. V. Kulagina, Russ. Phys. J., 54, No. 8, 839–854 (2011).

    Article  Google Scholar 

  7. Yu. A. Baimova, S. V. Dmitiev, A. I. Potekaev, et al., Russ. Phys. J., 53, No. 3, 213–224 (2010).

    Article  Google Scholar 

  8. S. V. Dmitriev, A. V. Samsonov, and A. I. Potekaev, Russ. Phys. J., 52, No. 6, 622–639 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. V. Dmitriev, A. A. Nazarov, A. I. Potekaev, et al., Russ. Phys. J., 52, No. 2, 132–137 (2009).

    Article  Google Scholar 

  10. S. V. Dmitriev, N. N. Medvedev, A. I. Potekaev, et al., Russ. Phys. J., 51, No. 8, 858–869 (2008).

    Article  Google Scholar 

  11. A. I. Potekaev, S. V. Dmitriev, V. V. Kulagina, et al., Low-Stability Long-Period Structures in Metallic Systems [in Russian], Tomsk, NTL Publ. (2010).

    Google Scholar 

  12. G. M. Poletaev and M. D. Starostenkov, Physics of the Solid State, 51, No. 4, 727–732 (2009).

    Article  ADS  Google Scholar 

  13. M. M. Aksenov, G. M. Poletaev, R. Yu. Rakitin, and M. D. Starostenkov, Fund. Probl. Sovr. Materialoved., No. 2, 64–67 (2005).

  14. A. I. Slutzker, Physics of the Solid State, 46, No. 9, 1658–1666 (2004).

    Article  ADS  Google Scholar 

  15. M. M. Myshlyaev, Crystal Structure Imperfections and Martensitic Transformations [in Russian], Moscow, Nauka (1972).

    Google Scholar 

  16. V. V. Rybin, Large Plastic Deformations and Metal Fracture [in Russian], Moscow, Metallurgiya (1986).

    Google Scholar 

  17. L. B. Zuev, V. I. Danilov, and V. V. Gorbatenko, Zh. Teor. Fiz., 65, No. 5, 91–103 (1995).

    Google Scholar 

  18. G. A. Malygin, Usp. Fiz. Nauk, 169, No. 9, 979–1010 (1999).

    Article  Google Scholar 

  19. V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids [in Russian], Novosibirsk, Nauka (1985).

    Google Scholar 

  20. V. N. Bovenko, Izv. Akadem. SSSR. Metally, No. 1, 129–137 (1984).

  21. V. A. Plotnikov, and S. V. Makarov, Russ. Phys. J., 48, No. 11, 1142–1147 (2005).

    Article  Google Scholar 

  22. V. A. Plotnikov, and S. V. Makarov, Deform. Razrushen. Metal., No. 3, 27–31 (2005).

  23. J.- P. Poirier, Creep of Crystals. High-Temperature Deformation Processes in Metals, Ceramics and Minerals (1988).

  24. G. A. Malygin, The Physics of Metals and Metallography, 34, No. 1, 191–199 (1972).

    Google Scholar 

  25. H. Conrad, in: Mechanical Behavior of Materials at Elevated Temperatures, McGraw Hill Book Co., Inc., N.Y. (1961).

    Google Scholar 

  26. M. Yu. Gudkin, I. A. Ovidko, and N. V. Skiba, The Physics of Metals and Metallography, 47, No. 9, 1602–1613 (2005).

    Google Scholar 

  27. A. I. Slutzker, The Physics of Metals and Metallography, 47, No. 5, 777–787 (2005).

    Google Scholar 

  28. V. M. Rozenberg, Creep of Metals [in Russian], Moscow, Metallurgiya (1967).

    Google Scholar 

  29. M. A. Lebedkin and L. R. Dunin-Barkovskii, Zh. Eksp. Teor. Fiz., 113, No. 5, 1816–1829 (1998).

    Google Scholar 

  30. V. N. Bovenko, Izv. Akad. Nauk. Ser. Fizich., 50, No. 3, 509–512 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Potekaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 23–30, June, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, S.V., Plotnikov, V.A. & Potekaev, A.I. High-Temperature Plastic Deformation and Acoustic Emission of Aluminum in a Low-Stability State. Russ Phys J 56, 630–637 (2013). https://doi.org/10.1007/s11182-013-0078-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0078-5

Keywords

Navigation