Skip to main content
Log in

Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol

  • Published:
Russian Physics Journal Aims and scope

Size characteristics, structure, and spectral and luminescent properties of nanoparticles fabricated by laser ablation of zinc metal targets in water and ethanol are experimentally investigated upon excitation by Nd:YAG-laser radiation (1064 nm, 7 ns, and 15 Hz). It is demonstrated that zinc oxide nanoparticles with average sizes of 10 nm (in water) and 16 nm (in ethanol) are formed in the initial stage as a result of ablation. The kinetics of the absorption and luminescence spectra, transmission electron microscopy, and x-ray structural analysis demonstrate that during long storage of water dispersions and their drying, nanoparticles efficiently interact with carbon dioxide gas of air that leads to the formation of water-soluble Zn(CO3)2(OH)6. In ethanol, Zn oxidation leads to the formation of stable dispersions of ZnO nanoparticles with 99% of the wurtzite phase; in this case, the fluorescence spectra of ZnO nanoparticles change with time, shifting toward longer wavelength region from 550 to 620 nm, which is caused by the changed nature of defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  2. V. E. Borisenko and N. K. Tolochko, eds., Nanomaterials and Nanotechnologies [in Russian], Publishing Center of Belarussian State University, Minsk (2008).

    Google Scholar 

  3. A. V. Simakin, V. V. Voronov, and G. A. Shafeev, Tr. A. M. Prokhorov Inst. Obshch. Fiz., 60, 83–107 (2004).

    Google Scholar 

  4. R. Mahfouz, F. J. Cadete Santos Aires, A. Brenier, et al., Appl. Surf. Sci., 254, 5181–5190 (2008).

    Article  ADS  Google Scholar 

  5. T. X. Phuoc, B. H. Howard, D. V. Martello, et al., Opt. Las. Eng., 46, 829–834 (2008).

    Article  Google Scholar 

  6. S. I. Dolgaev, A. V. Simakin, V. V. Voronov, et al., Appl. Surf. Sci., 186, 546–551 (2002).

    Article  ADS  Google Scholar 

  7. H. Usui, Y. Shimizu, T. Sasaki, and N. Koshizaki, J. Phys. Chem., B109, No. 1, 120–124 (2005).

    Google Scholar 

  8. B. C. Lin, P. Shen, and S. Y. Chen, J. Phys. Chem., C115, 5003–5010 (2011).

    Google Scholar 

  9. E. Chelnokov, M. Rivoal, Y. Colignon, et al., Appl. Surf. Sci., 258, No. 23, 9408–9411 (2012).

    Article  ADS  Google Scholar 

  10. C. Zhao, Y. Huang, and J. T. Abiade, Mater. Lett., 85, 164–167 (2012).

    Article  Google Scholar 

  11. C. Jagadish and S. Pearton, eds., Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications, Elsevier (2006).

    Google Scholar 

  12. A. Moezzi, A. M. McDonagh, and M. B. Cortie, Chem. Eng. J., 185–186, 1–22 (2012).

    Article  Google Scholar 

  13. L. Schmidt-Mende and J. L. Mac Manus-Driscoll, Mater. Today, 10, No. 5, 40–48 (2007).

    Article  Google Scholar 

  14. A. B. Djurisic, A. M. C. Ng, and X. Y. Chen, Prog. Quant. Electron., 34, 191–259 (2010).

    Article  ADS  Google Scholar 

  15. R. Yu, Q. Lin, S.-F. Leung, and Z. Fan, Nano Energy, 1, No. 1, 57–72 (2012).

    Article  Google Scholar 

  16. A. Wei, L. Pan, and W. Huang, Mater. Sci. Eng., B176, 1409–1421 (2011).

    Article  Google Scholar 

  17. K. Rajeshwar, M. E. Osugi, W. Chanmanee, et al., J. Photochem. Photobiol., C9, 171–192 (2008).

    Article  Google Scholar 

  18. S. K. Arya, S. Saha, J. E. Ramirez-Vick, et al., Anal. Chim. Acta, 737, 1–21 (2012).

    Article  Google Scholar 

  19. C. L. Sajti, S. Giorgio, V. Khodorkovsky, and W. Marine, Appl. Phys., A89, 315–319 (2007).

    Article  ADS  Google Scholar 

  20. H. Ma, P. L. Williams, and S. A. Diamond, Environm. Pollution, 172, 76–85 (2013).

    Article  Google Scholar 

  21. H.-J. Egelhaaf and D. Oelkrug, J. Crystal Growth, 161, Nos. 1–4, 190–194 (1996).

    Article  ADS  Google Scholar 

  22. J. A. Sans, A. Segura, M. Mollar, and B. Mari, Thin Solid Films, 453–454, 251–255 (2004).

    Article  Google Scholar 

  23. X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys., 95, No. 6, 3141–3147 (2004).

    Article  ADS  Google Scholar 

  24. I. Shalish, H. Temkin, and V. Narayanamurti, Phys. Rev., B69, No. 24, 1–4 (2004).

    Google Scholar 

  25. H. Zeng, W. Cai, J. Hu, et al., Appl. Phys. Lett., 88, Paper No. 171910, 1–3 (2006).

    Google Scholar 

  26. C. He, T. Sasaki, Y. Shimizu, and N. Koshizaki, Appl. Surf. Sci., 254, 2196–2202 (2008).

    Article  ADS  Google Scholar 

  27. I. T. Goronovskii, Yu. P. Nazarenko, and E. F. Nekryach, Brief Chemist’s Guide [in Russian], A.T. Pilipenko, ed., Naukova Dumka, Kiev (1987).

    Google Scholar 

  28. Z. Yan, R. Bao, and D. B. Chrisey, Chem. Phys. Lett., 497, 205–207 (2010).

    Article  ADS  Google Scholar 

  29. C. He, T. Sasaki, H. Usui, et al., J. Photochem. Photobiol., A191, 66–73 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Svetlichnyi.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 86–91, May, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svetlichnyi, V.A., Lapin, I.N. Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol. Russ Phys J 56, 581–587 (2013). https://doi.org/10.1007/s11182-013-0071-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0071-z

Keywords

Navigation