Skip to main content
Log in

Investigation of (Ti–Zr–Hf–V–Nb)N Multicomponent Nanostructured Coatings before and after Thermal Annealing by Nuclear Physics Methods of Analysis

  • Published:
Russian Physics Journal Aims and scope

(Ti–Zr–Hf–V–Nb)N multicomponent nanostructured coatings with thickness of 1.0–1.4 μm synthesized by the method of cathode arc-vapor deposition at temperatures of 250–300°С are investigated by various mutually complementary methods of elemental structural analysis using slow positron beams (SPB), proton microbeam based particle-induced x-ray emission (μ-PIXE), energy-dispersive x-ray spectroscopy (EDS) and scanning electron microscopy (SEM) analyses based on electron micro- and nanobeams, x-ray diffraction (XRD) method of phase structural analysis, and the “a–sin2φ” method of measuring a stressed-strained state (x-ray tensometry). The elemental composition, microstructure, residual stress in nanograins, profiles of defect and atom distributions with depth and over the coating surface in 3D-representation are studied for these coatings, and their phase composition, severely strained state, and composition of coatings before and after annealing at Tann = 600°С for annealing time τ = 30 min are investigated. It is demonstrated that the oxidation resistance of the examined coatings can be significantly increased by high-temperature annealing that leads to the formation of elastic severely strained compression state of the coating. Redistribution of elements and defects, their segregation near the interface boundaries and around grains and subgrains in the process of thermostimulated diffusion, and termination of spinodal segregation without considerable change of the average nanograin size are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Pogrebnjak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, Usp. Fiz. Nauk, 179, 35 (2009).

    Article  Google Scholar 

  2. A. D. Pogrebnjak, A. G. Ponomarev, A. P. Shpak, and Yu. A. Kunitskii, Usp. Fiz. Nauk, 182, 287 (2012).

    Article  Google Scholar 

  3. A. D. Pogrebnjak, V. M. Beresnev, A. A. Dem’yanenko, et al., Fiz. Tverd. Tela, 54, No. 9, 1882–1890 (2012).

    Google Scholar 

  4. A. D. Pogrebnjak, O. V. Sobol’, V. M. Beresnev, et al., Pis’ma Zh. Tekh. Fiz., 35, 103 (2009).

    Google Scholar 

  5. V. Dolique, A.-L. Thomann, P. Brault, et al., Mater. Chem. Phys., 117, No. 1, 142–147 (2009).

    Article  Google Scholar 

  6. M. Tsai, C. Wang, C. Tsai, et al., J. Electrochem. Soc., 158, No. 11, H1161–H1165 (2011).

    Article  Google Scholar 

  7. A. Li and X. Zhang, Acta Metall. Sin. (Engl. Lett.), 22, No. 3, 219–224 (2009).

    Article  Google Scholar 

  8. S. A. Firstov, V. F. Gorban’, N. A. Krapivka, and É. P. Pechkovskii, Kompoz. Nanostrukt., No. 2, 5–20 (2011).

  9. A. D. Pogrebnjak, V. V. Uglov, M. V. Il’yashenko, et al., Nanostructured Materials and Nanotechnology IV: Ceramic Engineering and Science Proceedings, 31, No. 7, 115–126 (2010).

    Article  Google Scholar 

  10. O. V. Sobol’, A. D. Pogrebnjak, and V. M. Beresnev, Fiz. Met. Metalloved., 112, No. 2, 199–206 (2011).

    Google Scholar 

  11. J. Musil, J. Vlcek, and P. Zeman, Adv. Appl. Ceram., 107, 148–154 (2008).

    Article  Google Scholar 

  12. A. D. Korotaev, V. D. Borisov, V. Yu Meshkov, et al., Fizich. Mesomekh., No. 12, 79 (2009).

  13. A. D. Korotaev, V. D. Borisov, V. Yu. Meshkov, et al., Russ. Phys. J., 2007, 50, No. 10, 969–979 (2009).

    Article  Google Scholar 

  14. O. V. Sobol’, A. A. Andreeve, V. F. Gorban’, et al., Pis’ma Zh. Tekh. Fiz., 38, No. 13, 41–48 (2012).

    Google Scholar 

  15. I. V. Blinkov, A. O. Volkhonskii, V. N. Anikin, et al., Fiz. Khim. Obrab. Mater., No. 4, 37–43 (2010).

  16. L. Shao-Yi, C. Shou-Yi, H. Yi-Chung, et al., Surf. Coat. Technol., 206, 5096 (2012).

    Article  Google Scholar 

  17. J. Musil, Surf. Coat. Technol., 207, 50–65 (2012).

    Article  MathSciNet  Google Scholar 

  18. A. D. Pogrebnjak and V. M. Beresnev, Nanocoatings, Nanosystems, and Nanotechnologies, Bentham Sci. Publ., New York (2012).

    Google Scholar 

  19. A. D. Pogrebnjak, A. P. Shpak, V. M. Beresnev, et al., J. Nanosci. Nanotech., 12, No. 12, 9213–9219 (2012).

    Article  Google Scholar 

  20. C. Hui-Wen, H. Ping-Kang, Y. Jien-Wei, et al., Surf. Coat. Technol., 202, 3360–3366 (2008).

    Article  Google Scholar 

  21. L. Chia-Han, C. Keng-Hao, L. Su-Jein, and Y. Jein-Wei, Surf. Coat. Technol., 202, 3732–3738 (2008).

    Article  Google Scholar 

  22. L. Chia-Han, T. Ming-Hung, L. Su-Jien, and Y. Jein-Wei, Surf. Coat. Technol., 201, 6993–6998 (2007).

    Article  Google Scholar 

  23. Y. Jein-Wei, C. Yu-Liang, L. Su-Jein, and C. Swe-Kai, Mater. Sci. Forum., 560, 1–9 (2007).

    Article  Google Scholar 

  24. Simnra.com.

  25. N. A. Azarenkov, O. V. Sobol’, A. D. Pogrebnjak, and V. M. Beresnev, Engineering of Vacuum-Plasma Coatings [in Russian], Publishing House of Karazin Khar’kov National University, Khar’kov (2011).

    Google Scholar 

  26. H.-E. Shaefer, Phys. Status Solidi (a), 102, 47 (1987).

    Article  ADS  Google Scholar 

  27. S. V. Rempel and A. I. Gusev, Pis’ma Zh. Eksp. Teor. Fiz., 88 (7), 508 (2008).

    Google Scholar 

  28. R. Wurschum, P. Farber, R. Dittmar, et al., Phys. Rev. Lett., 79, 4918 (1997).

    Article  ADS  Google Scholar 

  29. V. I. Lavrent’ev, A. D. Pogrebnjak, and R. Shandrik, Pis’ma Zh. Eksp. Teor. Fiz., 65 (1), 86 (1997).

    Google Scholar 

  30. S. Veprek, J. Vac. Sci. Tech., 125, 322 (2000).

    Google Scholar 

  31. J. Musil, Surf. Coat. Techbol., 125, 322 (2000).

    Article  Google Scholar 

  32. A. I. Gusev, Nanomaterials, Nanostructures, and Nanotekhnologies [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  33. R. Krause-Rehberg and H. S. Leipner, Positron Annihilation on Semiconductors: Study of Defects. Vol. 127, Series “Solid-State Sciences,” Springer Verlag, Berlin (1999).

    Book  Google Scholar 

  34. A. D. Pogrebnyak, A. G. Ponomarev, D. A. Kolesnikov, et al., Tech. Phys. Lett., 38, No. 7, 623–626 (2012).

    Article  ADS  Google Scholar 

  35. P. Misaelides, A. Hadzidimitriou, F. Noli, et al., Appl. Surf. Sci., 252 (23), 8043–8049 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Pogrebnjak.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 41–50, May, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogrebnjak, A.D., Beresnev, V.M., Bondar’, A.V. et al. Investigation of (Ti–Zr–Hf–V–Nb)N Multicomponent Nanostructured Coatings before and after Thermal Annealing by Nuclear Physics Methods of Analysis. Russ Phys J 56, 532–541 (2013). https://doi.org/10.1007/s11182-013-0065-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0065-x

Keywords

Navigation