Skip to main content
Log in

Spectroscopic support of laser remote sensing of the sulfur dioxide gas in the jet of engine exhaust gases

  • Quantum Electronics
  • Published:
Russian Physics Journal Aims and scope

The feasibility of SO2 registration in the plume of a jet engine as one of the methods of monitoring of its operation quality is investigated. Spectral characteristics are calculated using the line by line method, information-computing complex TRAVA developed by the authors, and the compiled spectroscopic database on high-temperature SO2. Unlike the HITRAN database, the original spectroscopic data possess predictability up to T = 1500 K. It is established that in case of active SO2 detection using a CO laser, the laser line corresponding to the 32-31 Р5 transition is promising for temperatures T = 300–1100 K. In addition, the most suitable range of the spectrum for passive sensing of hot SO2 in the engine plume – 1330.0–1331.6 cm–1 – is established in which the useful signal level exceeds background radiation for a minimum SO2 concentration (5 ppm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Lazarev, Optoelectronic Devices [in Russain], Mashinostroenie, Moscow (1989).

    Google Scholar 

  2. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Principles of Atmospheric Optics [in Russian], Nauka, Saint Petersburg (2003).

    Google Scholar 

  3. E. D. Hinkley, ed., Laser Monitoring of the Atmosphere [Russian translation], Mir, Moscow (1979).

  4. R. C. Brown, R. C. Miake-Lye, M. R. Anderson, et al., J. Geophys. Res., D101, No. 17, 22939–22953 (1996).

    Article  ADS  Google Scholar 

  5. R. T. Menzies, Appl. Opt., 10, No. 7, 1532–1538 (1971).

    Article  ADS  Google Scholar 

  6. G. A. Antcliffe and J. S. Wrobel, Appl. Opt., 11, No. 7, 1548–1552 (1972).

    Article  ADS  Google Scholar 

  7. R. C. Miake-Lye, B. E. Anderson, W. R. Cofer, et al., Geophys. Res. Lett., 25, No. 10, 1677–1680 (1998).

    Article  ADS  Google Scholar 

  8. S. C. Schmidt, Technical Report LA-UR-99-2961, OSTI ID 785073 (1999).

  9. R. C. Miake-Lye, M. Martinez-Sanchez, R. C. Brown, et al., NASA CR 189688, Aerodyne Research, Inc., Billerica, MA (1992).

  10. R. C. Brown, R. C. Miake-Lye, C. E. Kolb, et al., Geophys. Res. Lett., 23, 3603–3606 (1996).

    Article  ADS  Google Scholar 

  11. R. C. Brown, R. C. Miake-Lye, M. R. Anderson, et al., Geophys. Res. Lett., 23, 3607–3610 (1996).

    Article  ADS  Google Scholar 

  12. S. V. Ivanov, Phys. Wave Phenom., 15, No. 1, 57–65 (2007).

    Article  ADS  Google Scholar 

  13. O. G. Buzykin, S. V. Ivanov, A. A. Ionin, et al., J. Russ. Laser Res., 26, No. 5, 402–426 (2005).

    Article  Google Scholar 

  14. L. S. Rothman, C. P. Rinsland, A. Goldman, et al., J. Quant. Spectrosc. Rad. Transfer, 60, No. 5, 665–710 (1998).

    Article  ADS  Google Scholar 

  15. R. M. Hoody, Atmospheric Radiation [Russian translation], Mir, Moscow (1966).

    Google Scholar 

  16. A. A. Mitsel, K. M. Firsov, and B. A. Fomin, Optical Radiation Transfer in a Molecular Atmosphere [in Russian], Stt Publishing, Tomsk (2001).

    Google Scholar 

  17. M. Osumi and T. Kunitomo, J. Quant. Spectrosc. Rad. Transfer, 17, 493–499 (1977).

    Article  ADS  Google Scholar 

  18. A. M. Starik, A. M. Savel’ev, N. S. Titova, and U. Schumann, Aerospace Sci. Technol., 6, No. 1, 63–81 (2002).

    Article  Google Scholar 

  19. L. S. Rothman, I. E. Gordon, R. J. Barber, et al., J. Quant. Spectrosc. Rad. Transfer, 111, No. 15, 2139–2150 (2010).

    Article  ADS  Google Scholar 

  20. O. K. Voitsekhovskaya, A. V. Voitsekhovskii, and D. E. Kashirskii, Izv. Vyssh. Uchebn. Zaved., Fiz., 53, No. 9/3, 157–158 (2010).

    Google Scholar 

  21. A. V. Voitsekhovskiii, O. K. Voitsekhovskaya, and D. E. Kashirskii, Izv. Vyssh. Uchebn. Zaved., Fiz., 55, No. 8/3, 86–87 (2012).

    Google Scholar 

  22. O. K. Voitsekhovskaya, Atm. Opt., 3, No. 6, 585–591 (1990).

    Google Scholar 

  23. I. Suzuki, Appl. Spectrosc. Rev., 9, No. 1, 249–301 (1975).

    Article  ADS  Google Scholar 

  24. T. Nakanaga, S. Kondo, and S. Saeki, J. Mol. Spectrosc., 82, No. 2, 413–423 (1980).

    Article  ADS  Google Scholar 

  25. W. J. Lafferty, A. S. Pine, J.-M. Flaud, and C. Camy-Peyret, J. Mol. Spectrosc., 157, 499–511 (1993).

    Article  ADS  Google Scholar 

  26. L. Coudert, A. Maki, and W. B. Olson, J. Mol. Spectrosc., 124, 437–442 (1987).

    Article  ADS  Google Scholar 

  27. G. Guelachvili, O. N. Ulenikov, and G. A. Ushakova, J. Mol. Spectrosc., 108, 1–5 (1984).

    Article  ADS  Google Scholar 

  28. P. M. Chu, S. J. Wetzel, W. J. Lafferty, et al., J. Mol. Spectrosc., 189, 55–63 (1998).

    Article  ADS  Google Scholar 

  29. J. Henningsen, A. Barbe, and M.-R. Backer-Barilly, J. Quant. Spectrosc. Rad. Transfer, 109, 2491–2510 (2008).

    Article  ADS  Google Scholar 

  30. N. Tasinato, Dottorato di ricerca, Università Ca’ Foscari Venezia (2008).

  31. B. Sumpf, J. Mol. Struct., 599, 39–49 (2001).

    Article  ADS  Google Scholar 

  32. H. S. P. Müller and S. Brünken, J. Mol. Spectrosc., 232, No. 2, 213–222 (2005).

    Article  Google Scholar 

  33. J.-M. Flaud, A. Perrin, L. M. Salah, et al., J. Mol. Spectrosc., 160, 272–278 (1993).

    Article  ADS  Google Scholar 

  34. O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, et al., J. Quant. Spectrosc. Rad. Transfer, 112, No. 3, 486–512 (2011).

    Article  ADS  Google Scholar 

  35. W. J. Lafferty, J.-M. Flaud, and G. Guelachvili, J. Mol. Spectrosc., 188, 106–107 (1998).

    Article  ADS  Google Scholar 

  36. O. N. Ulenikov, E. S. Bekhtereva, S. Alanko, et al., J. Mol. Spectrosc., 257, 137–156 (2009).

    Article  ADS  Google Scholar 

  37. W. J. Lafferty, A. S. Pine, G. Hilpert, et al., J. Mol. Spectrosc., 176, 280–286 (1996).

    Article  ADS  Google Scholar 

  38. J. M. Flaud and W. J. Lafferty, J. Mol. Spectrosc., 161, 396–402 (1993).

    Article  ADS  Google Scholar 

  39. T. Kunitomo, H. Masuzaki, S. Ueoka, and M. Osumi, J. Quant. Spectrosc. Rad. Transfer, 25, 345–349 (1981).

    Article  ADS  Google Scholar 

  40. S. H. Chan and C. L. Tien, J. Heat Transfer, 93, 172–178 (1971).

    Article  Google Scholar 

  41. L. S. Rothman, I. E. Gordon, A. Barbe, et al., J. Quant. Spectrosc. Rad. Transfer, 110, No. 5, 665–710 (2008).

    Google Scholar 

  42. D. Weidmann and D. Courtois, J. Quant. Spectrosc. Rad. Transfer, 83, 655–666 (2004).

    Article  ADS  Google Scholar 

  43. O. K. Voitsekhovskaya, D. V. Volkov, D. E. Kashirskii, et al., Kvant. Elektron., 42, No. 7, 634–639 (2012).

    Article  ADS  Google Scholar 

  44. J. T. Yardley, J. Mol. Spectrosc., 35, 314–324 (1970).

    Article  ADS  Google Scholar 

  45. T. I. Velichko, S. N. Mikhailenko, and S. A. Tashkun, J. Quant. Spectrosc. Rad. Transfer, 113, 1643–1655 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Voitsekhovskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 104–112, April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voitsekhovskaya, O.K., Kashirskii, D.E. & Egorov, O.V. Spectroscopic support of laser remote sensing of the sulfur dioxide gas in the jet of engine exhaust gases. Russ Phys J 56, 473–482 (2013). https://doi.org/10.1007/s11182-013-0057-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0057-x

Keywords

Navigation