Skip to main content
Log in

The Hubbard model of fullerene С60

  • Published:
Russian Physics Journal Aims and scope

A short description, analysis, and comparison of four different methods used for calculation of the Green’s functions for the Hubbard model in the approximation of static fluctuations are presented. The Green’s functions in the approximation of static fluctuations are calculated for fullerene С60, and three main optical С60 absorption bands are interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. Roy. Soc., A276, 238 (1963).

    ADS  Google Scholar 

  2. Y. Nagaoka, Phys. Rev., 147, 392 (1966).

    Article  ADS  Google Scholar 

  3. F. Gebhard, The Mott Metal-Insulator Transition: Models and Methods, Springer, Berlin (1997).

  4. R. O. Zaitsev, Diagram Methods in the Theory of Superconductivity and Ferromagnetizm [in Russian], Editorial URSS Publishers, Moscow (2004).

    Google Scholar 

  5. H. Kino and H. Fukuyama, J. Phys. Soc. Jpn., 65, 2158 (1996).

    Article  ADS  Google Scholar 

  6. R. C. Haddon, L. E. Brus, and K. Raghavachari, Chem. Phys. Lett., 125, 459 (1986).

    Article  ADS  Google Scholar 

  7. A. I. Murzashev, Zh. Eksp. Teor. Fiz., 135, 122 (2009).

    Google Scholar 

  8. Yu. A. Izyumov, M. I. Katsnel’son, and Yu. N. Skryabin, Magnetism of Collectivized Electrons [in Russian], Nauka, Moscow (1994).

    Google Scholar 

  9. V. V. Loskutov, G. I. Mironov, and R. R. Nigmatullin, Fiz. Nizk. Temp., 22, 282 (1966).

    Google Scholar 

  10. G. I. Mironov, Fiz. Tverd. Tela, 49, 527 (2007).

    Google Scholar 

  11. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved. Privolzhskii Raion. Fiz.-Mat. Nauki, No. 3(19), 151 (2011).

  12. A. V. Silant’ev, Strukt. Dinam. Molek. Sist., No. 13А, 96 (2011).

  13. A. V. Silant’ev, Vestn. Mariisk. Gosud. Univ., No. 8, 18; 22 (2012).

  14. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved. Privolzhskii Raion. Fiz.-Mat. Nauki, No. 4(20), 122 (2011).

  15. R. R. Nigmatullin and V. A. Toboev, Teor. Matem. Fiz., 68, 88 (1986).

    MathSciNet  Google Scholar 

  16. H. Yasumatsu, T. Kondow, H. Kitagawa, et al., J. Chem. Phys., 104, 899 (1996).

    Article  ADS  Google Scholar 

  17. G. Zimmerman and A. L. Smith, Chemical Properties of the Fullerenes, Drexel University, Philadelphia (1993).

  18. H. Ajie, M. M. Alvarez, S. J. Anz, et al., J. Phys. Chem., 94, 8630 (1990).

    Article  Google Scholar 

  19. A. V. Nikolaev and B. N. Plakhutin, Usp. Khim., 79, 803 (2010).

    Article  Google Scholar 

  20. S. Leach, M. Vervolet, A. Despres, et al., Chem. Phys., 160, 451 (1992).

    Article  Google Scholar 

  21. A. V. Nikolaev, I. V. Bodrenko, and E. V. Tkalya, Phys. Rev., A77, 012503 (2008).

    ADS  Google Scholar 

  22. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Silant’ev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 70–79, February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silant’ev, A.V. The Hubbard model of fullerene С60 . Russ Phys J 56, 192–203 (2013). https://doi.org/10.1007/s11182-013-0015-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0015-7

Keywords

Navigation