Skip to main content
Log in

Formation of a high-frequency discharge in the active metal vapor laser medium

  • Quantum Electronics
  • Published:
Russian Physics Journal Aims and scope

The evolution of an electric discharge in the active self-terminating metal atom laser medium is examined. Electrodes in the gas discharge tube are placed in cold buffer zones at a distance of several centimeters from the thermally insulated gas discharge channel. It is shown that an abnormal glow discharge is initiated in the cold buffer zones, as capacitive components of the discharge circuit charge from a storage capacitor. In this case, the current-voltage characteristic of the abnormal glow discharge in the cold buffer zones exhibiting a steep current growth and sharp voltage drop is illustrated in the right-hand branch of the Pashcen curve. These processes cause the discharge to pinch. As the capacitive components charge from the storage capacitor for the electrodes in the gas discharge tube placed in the cold buffer zones at a distance of ≤1–3 mm from the thermally insulated gas discharge channel, an obstructed discharge is formed in the cold zones. On ignition of the discharge shown in the right-hand branch of the Pashcen curve the current accompanied by gas heating eliminates the contraction of the discharge in the cold buffer zones and initiates a high-frequency discharge in the active medium since the instant the breakdown (pinch) occurs. In this case, the current-voltage characteristic is demonstrated in the left-hand branch of the Pashcen curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Bukshpun, E. L. Latush, and M. F. Sém, Sov. J. Quantum Electron., 18, No. 9, 1098–1100 (1988).

    Article  ADS  Google Scholar 

  2. P. A. Bokhan and D. E. Zakrevskii, Zh. Tekh. Fiz., 67, No. 4, 25 (1997).

    Google Scholar 

  3. P. A. Bokhan and D. E. Zakrevskii, Pis’ma Zh. Exp. Tekh. Fiz., 62, No. 1, 26 (1995).

    Google Scholar 

  4. V. M. Klimkin, Preprint № 1, Institute of Atmospheric Optics SB RAS, Tomsk, Russia (1999).

  5. V. M. Klimkin, Proc. SPIE, 4747, 164 (2002).

    Article  ADS  Google Scholar 

  6. V. M. Klimkin, Techn. Phys. Lett., 29, No. 9, 754–756 (2003).

    Article  ADS  Google Scholar 

  7. A. N. Soldatov, E. L. Latush, G. D. Chebotarev, et al., Pulse-Periodic Strontium and Calcium Vapor Lasers, A. N. Soldatov and E. L. Latush, eds. [in Russian], TML Press, Tomsk, Russia (2012).

  8. Yu. P. Polunin, A. N. Soldatov, and N. A. Yudin, Opt. Atmos. Okeana, 22, No. 11, 1051 (2009).

    Google Scholar 

  9. A. N. Soldatov, N. A. Yudin, Yu. P. Polunin, et al., Russ. Phys. J., 51, No. 1, 5–9 (2008).

    Article  Google Scholar 

  10. A. N. Soldatov, N. A. Yudin, A. V. Vasilieva, et al., Kvant. Elektron., 42, No. 1, 31 (2012).

    Article  ADS  Google Scholar 

  11. A. V. Vasilieva, E. L. Latush, Yu. P. Polunin, et al., Izv. Vyssh. Uchebn. Zaved., Fizika, 53, No. 5/2, 62 (2010).

    Google Scholar 

  12. Yu. P. Raizer, Gas Discharge Physics [in Russian], Intellekt, Moscow (2009).

    Google Scholar 

  13. Yu. A. Piotrovskii, N. M. Reutova, Yu. A. Tolmachev, Opt. Spektros., 7, No. 1, 99 (1984).

    Google Scholar 

  14. R. J. Carman, D. J. W. Brown, and J. A. Piper, IEEE J. Quantum Electron, 30, No. 8, 1876 (1994).

    Article  ADS  Google Scholar 

  15. N. A. Yudin, V. M. Klimkin, and V. E. Prokopiev, Kvant. Elektron., 28, No. 3, 273 (1999).

    Google Scholar 

  16. A. A. Isaev, V. T. Mikhelsoo, G. G. Petrash, et al., Kvant. Elektron., 15, No. 12, 2510 (1988).

    ADS  Google Scholar 

  17. P. A. Bokhan, V. I. Silant’ev, and V. I. Solomonov, Kvant. Elektron., 7, No. 7, 1264 (1980).

    ADS  Google Scholar 

  18. P. A. Bokhan, D. E. Zakrevskii, and M. A. Lavrukhin, Kvant. Elektron., 39, No. 10, 911 (2009).

    Article  ADS  Google Scholar 

  19. A. A. Isaev, M. A. Kazaryan, and G. G. Petrash, Pis’ma Zh. Exp. Teor. Fiz., 16, No. 1, 40 (1972).

    Google Scholar 

  20. V. M. Batenin, V. V. Buchanov, M. A. Kazaryan, et al., Self-Terminating Metal Atom Lasers [in Russian], Nauchnaya Kniga, Moscow (1998).

  21. P. Baille, Chang Jen-Shih, A. Claude A, et al., J. Phys. B: At. Mol. Phys., 14, 1485 (1981).

    Article  ADS  Google Scholar 

  22. P. A. Bokhan and D. E. Zakrevskii, Kvant. Elektron., 32, No. 7, 602 (2002).

    Article  ADS  Google Scholar 

  23. N. A. Yudin, Kvant. Elektron., 30, No. 7, 583 (2000).

    Article  ADS  Google Scholar 

  24. K. I. Zemskov, A. A. Isaev, and G. G. Petrash, Quant. Electron., 29, No. 5, 462–466 (1999).

    Article  ADS  Google Scholar 

  25. N. A. Yudin, V. B. Sukhanov, F. A. Gubarev, and E. S. Evtushenko, Kvant. Elektron., 38, No. 1, 23 (2008).

    Article  ADS  Google Scholar 

  26. N. A. Yudin, F. A. Gubarev, and V. B. Sukhanov, Izv. Vyssh. Uchebn. Zaved., Fizika, 53, No. 5/2, 41 (2010).

    Google Scholar 

  27. N. A. Yudin, Izv. Vyssh. Uchebn. Zaved., Fizika, 53, No. 5/2, 113 (2010).

    Google Scholar 

  28. N. A. Yudin, M. P. Tretiyakova, and N. N. Yudin, Opt. Atmos. Okeana, 25, No. 3, 254 (2012).

    Google Scholar 

  29. G. P. Hogan and C. E. Webb, Opt. Comm., 117, No. 5, 550 (1995).

    ADS  Google Scholar 

  30. A. G. Grigoriyants, M. A. Kazaryan, and N. A. Lyabin, Metal Vapor Lasers [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  31. E. A. Bogdanov, A. A. Kudryavtsev, and A. S. Chirkov, Zh. Tekh. Fiz., 81, No. 1, 59 (2011).

    Google Scholar 

  32. A. N. Soldatov, N. A. Yudin, A. V. Vasilieva, and Yu. P. Polunin, Russ. Phys. J., 51, No. 12, 1334–1343 (2008).

    Article  Google Scholar 

  33. A. G. Abramov, E. I. Asinovskii, and L. M. Vasilyak, Fiz. Plazmy, 14, 979 (1988).

    ADS  Google Scholar 

  34. G. A. Mesyats and V. G. Shpak, Prib. Tekh. Exp., No. 6, 5 (1978).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Yudin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 51–59, February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudin, N.A., Kostyrya, I.D., Polunin, Y.P. et al. Formation of a high-frequency discharge in the active metal vapor laser medium. Russ Phys J 56, 169–179 (2013). https://doi.org/10.1007/s11182-013-0013-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0013-9

Keywords

Navigation