Skip to main content
Log in

Calculation of the intensities of vibrational hydrogen sulfide transitions for remote sensing of high-temperature media

  • Optics and Spectroscopy
  • Published:
Russian Physics Journal Aims and scope

Integral intensities of vibrational bands are calculated for hydrogen sulfide (H2S) taking into account the Fermi and Darling–Dennison resonances. Components of the dipole moment function in normal coordinates and parameters of the effective vibrational Hamiltonian borrowed from the literature are used as initial data. From several sets of the dipole moment function parameters, we have chosen the set of the parameters computations with which provide the closest agreement with the experimental integral intensities of the H2S bands. As a result, predictive computations of the vibrational band intensities (ΣΔυ i  = 2) are carried out at temperatures in the range 600–1500 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Naumenko and E. R. Polovtseva, Opt. Atm. Okeana, 16, No. 11, 985–991 (2003).

    Google Scholar 

  2. L. Legushat-Fossat, J. M. Flaud, C. Camy-Peyret, and J. W. C. Johns, Can. J. Phys., 62, 1889–1923 (1984).

    Article  ADS  Google Scholar 

  3. L. R. Brown, J. A. Crisp, D. Crisp, et al., http://hdl.handle.net/2014/33910.

  4. O. V. Naumenko and E. R. Polovtseva, Opt. Atmos. Okeana, 19, No. 8, 692–697 (2006).

    Google Scholar 

  5. M. T. Emerson and D. F. Eggers, J. Chem. Phys., 37, 251–259 (1962).

    Article  ADS  Google Scholar 

  6. O. N. Sulakshina, Yu. G. Borkov, and Vl. G. Tyuterev, Opt. Atmos. Okeana, 14, No. 9, 753–761 (2001).

    Google Scholar 

  7. O. K. Voitsekhovskaya, Yu. S. Makushkin, N. N. Trifonova, and V. N. Cherepanov, Program of calculating centers and intensities of rovibrational lines of asymmetric top molecules, No. P004348, State Fund of Algorithms and Programs (1980).

  8. A. D. Bykov, Yu. S. Makushkin, and O. N. Ulenikov, Rovibrational Spectroscopy of Water Vapor [in Russian], Nauka, Novosibirsk (1989).

    Google Scholar 

  9. O. V. Naumenko and E. R. Polovtseva, Opt. Atmos. Okeana, 17, No. 11, 791–794 (2004).

    Google Scholar 

  10. O. K. Voitsekhovskaya, Opt. Atm., 3, No. 6, 533–541 (1990).

    Google Scholar 

  11. A. Bykov, O. Naumenko, M. Smirnov, et al., Can. J. Phys., 72, 989–1000 (1994).

    Article  ADS  Google Scholar 

  12. G. K. Speirs and V. Spirko, J. Mol. Spectrosc., 56, 104–123 (1975).

    Article  ADS  Google Scholar 

  13. J. Senekowitsch, S. Carter, A. Zilch, et al., J. Chem. Phys., 90, 783–794 (1989).

    Article  ADS  Google Scholar 

  14. T. Cours, P. Rosmus, and Vl. G. Tyuterev, J. Chem. Phys., 331, 317–322 (2000).

    Google Scholar 

  15. http://www.cfa.harvard.edu/HITRAN/

  16. http://spectra.iao.ru/

  17. O. K. Voitsekhovskaya, A. V. Voitsekhovskii, D. E. Kashirskii, and I. S. Suslova, J. Opt. Technol., 77, No. 9, 37–44 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Voitsekhovskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 19–24, April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voitsekhovskaya, O.K., Egorov, O.V. Calculation of the intensities of vibrational hydrogen sulfide transitions for remote sensing of high-temperature media. Russ Phys J 55, 362–368 (2012). https://doi.org/10.1007/s11182-012-9820-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-012-9820-7

Keywords

Navigation