Skip to main content

Advertisement

Log in

Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading

  • Published:
Russian Physics Journal Aims and scope

Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s–1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Raghavan, A. S. Sastri, and M. J. Marcinkowski, Trans. Met. Soc. AIME, 245, 1569–1575 (1968).

    Google Scholar 

  2. Y. N. Datsur and W. C. Leslie, Metal. Trans., A12, 749–759 (1981).

    Google Scholar 

  3. D. Rittel and I. Roman, Metal. Trans., A19, 2269–2277 (1988).

    Google Scholar 

  4. Yu. I. Chumlyakov, I. V. Kireeva, E. G. Zakharova, et al., Russ. Phys. J., No. 3, 274–284 (2002).

  5. E. G. Astafurova and Yu. I. Chumlyakov, Fiz. Met. Materialoved., 108, No. 5, 541–550 (2009).

    Google Scholar 

  6. W.-S. Lee and T.-H. Chen, Proc. Inst. Mech. Engin., C216, 971–982 (2002).

    Google Scholar 

  7. M. A. Meyers, Dynamic Behavior of Materials, Wiley &Sons, New York (1994).

    Book  MATH  Google Scholar 

  8. T. Antoun, L. Seaman, D. R. Curran, et al., Spall Fracture, Springer Verlag, New York (2003).

    Google Scholar 

  9. K. Baumung, H. Bluhm, G. I. Kanel, et al., Int. J. Impact Eng., 25, 631–639 (2001).

    Article  Google Scholar 

  10. A. B. Markov, S. A. Kitsanov, V. P. Rotshtein, et al., Russ. Phys. J., No. 7, 758–765 (2006).

  11. E. F. Dudarev, A. B. Markov, G. P. Bakach, et al., Russ. Phys. J., No. 3, 239–244 (2009).

  12. S. Eliezer, I. Gilath, and T. Bar-Noy, J. Appl. Phys., 67, No. 2, 715–724 (1990).

    Article  ADS  Google Scholar 

  13. F. Greulich and L. E. Murr, Mater. Sci. Eng., 39, No. 1, 81–93 (1979).

    Article  Google Scholar 

  14. S. Nemat-Nasser and Y. Li, Acta Mater., 46, No. 2, 565–577 (1998).

    Article  Google Scholar 

  15. F. J. Zerilli and R. W. Armstrong, Acta Metall., 40, No. 8, 1803–1808 (1992).

    Article  Google Scholar 

  16. A. R. Champion and R. W. Rodhe, Appl. Phys., 41, No. 5, 2213–2223 (1970).

    Article  Google Scholar 

  17. É. M. Nadgornyi, in: Imperfections of the Crystal Structure and Martensitic Transformations, Yu. A. Osip’yan and R. I. Éntin, eds. [in Russian], Nauka. Moscow (1972), pp. 151–175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Gnyusov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 56–62, October, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnyusov, S.F., Rotshtein, V.P., Polevin, S.D. et al. Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading. Russ Phys J 53, 1046–1052 (2011). https://doi.org/10.1007/s11182-011-9529-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-011-9529-z

Keywords

Navigation