Skip to main content

Advertisement

Log in

Turbulence characteristics from minisodar data

  • Published:
Russian Physics Journal Aims and scope

Vertical profiles of atmospheric turbulence characteristics, including spatial and temporal longitudinal and transverse velocity structure functions, velocity structure characteristics, and turbulent kinetic energy dissipation rates retrieved from time series of vertical profiles of the wind velocity vector measured with a minisodar operating at a frequency of 4900 Hz are presented. It is established that the structure functions first increase with the separation distance between the observation points and then are saturated; moreover, the longitudinal structure function is much greater than the transverse one, which is in agreement with the data available from the literature. The velocity structure characteristic is well described by the z−2/3 altitude dependence predicted theoretically. Calculated values of the turbulent energy dissipation rate are in agreement with the data available from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Kurbatskii and L. I. Kurbatskaya, Izv. Ross. Akad. Nauk. Fiz. Atm. Okeana, 42, No. 4, 476–494 (2006).

    Google Scholar 

  2. A. D. Tunic, The Refractive Index Structure Parameter / Atmospheric Optical Turbulence Model. Report ARL-TR-1615, Army Research Laboratory, Adelphi, MD 20783-1197 (1998).

  3. M. A. Kallistratova, in: Proc. 14th Int. Symp. for the Advancement of Boundary Layer Remote Sensing, Denmark (2008), pp. 012001-1–012001-14.

  4. E. Emeis and K. Schäfer, Bound. Layer Meteor., 121, 377–385 (2006).

    Article  ADS  Google Scholar 

  5. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Part II: Random Fields [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  6. R. L. Coulter and M. A. Kallistratova, Meteor. Atmosph. Phys., 85, Nos. 1–3, 3–19 (2004).

    ADS  Google Scholar 

  7. A. Ya. Bogushevich and L. G. Shamanaeva, Opt. Atm. Okeana, 12, 54–57 (1999).

    Google Scholar 

  8. L. G. Shamanaeva, in: Proc. 14th Int. Symp. for the Advancement of Boundary Layer Remote Sensing, Denmark (2008), pp. 012007-1–012007-6.

  9. R. L. Coulter, Bound. Layer Meteor., 52, 75–91 (1990).

    Article  ADS  Google Scholar 

  10. http: // minisodar.org>.

  11. V. I. Tatarskii, Wave Propagation in a Turbulent Medium, McGraw-Hill, New York (1967).

    Google Scholar 

  12. J. C. Kaimal, Bound. Layer Meteor., 4, 289–309 (1973).

    Article  ADS  Google Scholar 

  13. M. A. Kallistratova and A. Ya. Kon, Radioacoustic Sounding of the Atmosphere [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  14. V. A. Banakh, I. N. Smalikho, E. L. Pichugina, and A. Bruer, Opt. Atm. Okeana, 22, No. 10, 966–972 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Underwood.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 85–90, May, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Underwood, K.H., Shamanaeva, L.G. Turbulence characteristics from minisodar data. Russ Phys J 53, 526–532 (2010). https://doi.org/10.1007/s11182-010-9453-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-010-9453-7

Keywords

Navigation