Skip to main content
Log in

Parametrical conversion of the frequency of organic lasers into the middle-IR range of the spectrum

  • Optics and Spectroscopy
  • Published:
Russian Physics Journal Aims and scope

The possibility of parametrical conversion of visible radiation of solid-state organic lasers into the middle-IR range of the spectrum in nonlinear GaSe1–x S x (x = 0‒0.13) crystals is investigated. Generation at the difference frequency (wavelength λ3 = 9.43 μm) of induced oxazine-1 (at λ1 = 740 nm) and rhodamine-800 (λ2 = 803.4 nm) radiation is excited. The conversion efficiency is estimated, and prospects for its further increase are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laser Monitoring of the Atmosphere. Topics in Applied Physics, Vol. 14, E. D. Hinkley, ed., Springer Verlag, Berlin (1976).

  2. D. K. Killinger, N. Menyuk, and W. E. De Feo, Appl. Phys. Lett., 36, No. 6, 402–405 (1980).

    Article  ADS  Google Scholar 

  3. Yu. M. Andreev, M. G. Voevodin, P. P. Geiko, et al., Lidar Systems and Their Optoelectronic Elements [in Russian], Publishing House of the Siberian Branch of the Russian Academy of Sciences, Tomsk (2004).

    Google Scholar 

  4. G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals. Springer Series in Optical Sciences, Vol. 64, Springer, Berlin (1999).

    Google Scholar 

  5. T. N. Kopylova, G. V.Mayer, T. V. Solodova, et al., Kvant. Elektron., 38 (2), 109–114 (2008).

    Article  Google Scholar 

  6. A. S. Chandra, J. Fox, and C. Swim, in: Proc. Int. Conf. Lasers’95, Mc Lean, VA (1996), pp. 391–396.

  7. N. C. Fernelius, Prog. Crystal Growth Charact. Mater., 28, 275–353 (1994).

    Article  Google Scholar 

  8. A. A. Tikhomirov, Yu. M. Andreev, G. V. Lanskii, et al., Proc. SPIE, 6258, 64–72 (2006).

    Google Scholar 

  9. Yu. M. Andreev, V. V. Atuchin, G. V. Lanskii, et al., Mater. Sci. Eng., B128, 205–210 (2006).

    Article  Google Scholar 

  10. K. L. Vodopyanov and L. A. Kulevskii, Opt. Commun., 118, 375–378 (1995).

    Article  ADS  Google Scholar 

  11. N. B. Singh, D. R. Suhre, V. Balakrishna, et al., Prog. Cryst. Growth Charact. Mater., 37, 47–102 (1998).

    Article  Google Scholar 

  12. E. Takaoka and K. Kato, Jpn. J. Appl. Phys., 38, 2755–2759 (1999).

    Article  ADS  Google Scholar 

  13. K. R. Allakhverdiev, T. Baykara, A. Kultibekov–Gulubayov, et al., J. Appl. Phys., 98, 093515 (1–6) (2005).

    Google Scholar 

  14. K. R. Allakhverdiev, R. I. Guliev, E. Yu. Salaev, and V. V. Smirnov, Kvant. Elektron., 9, No. 7, 1483–1485 (1982).

    Google Scholar 

  15. E. Takaoka and K. Kato, in: CLEO’98, Vol. 6 of 1998 OSA Tech. Digest. Series, Optical Society of America, Washington, D.C. (1998), pp. 253–254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Kopylova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 83‒88, June, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, G.V., Kopylova, T.N., Andreev, Y.M. et al. Parametrical conversion of the frequency of organic lasers into the middle-IR range of the spectrum. Russ Phys J 52, 640–645 (2009). https://doi.org/10.1007/s11182-009-9277-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-009-9277-5

Keywords

Navigation