Skip to main content
Log in

The strontium-vapor laser pumping efficiency under running-wave excitation

  • Condensed-State Physics
  • Published:
Russian Physics Journal Aims and scope

The effect of the design features of the gas-discharge tube on the processes proceeding in the discharge circuit of a metal-vapor laser has been investigated. The position of electrodes in the gas-discharge tube has been found to significantly affect the processes at work in the discharge circuit and the energy characteristics of the laser. For instance, gas-discharge tubes with electrodes placed in the hot region of the discharge channel are typified by high metastable-population rates at the leading edge of the excitation pulse, whereas with electrodes positioned in cold buffer regions, the leading edge of the voltage pulse across the resistive component of the tube impedance is seen to peak. Conditions for running-wave generation in the active media of lasers on self-terminated transitions of metal atoms and the running-wave use efficiency for laser pumping are discussed, considering a strontium-vapor laser as an illustration. It is shown that the running wave is generated as the result of the breakdown in the anode end of the gas-discharge tube and is maintained by the energy stored in the capacitive component of the impedance of the gas-discharge tube. The lasing pulse duration under running-wave excitation corresponds to the time it takes an ionization wave to propagate from the anode to the cathode of the gas-discharge tube, with pumping efficiency being ~6–8% for a strontium-vapor laser. The average lasing power varies within 10–15% depending on whether the totally reflecting cavity mirror is placed near the anode or the cathode of the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Petrash, Usp. Fiz. Nauk, 105, 645–676 (1971).

    Google Scholar 

  2. A. N. Soldatov and V. I. Solomonov, Gas-Discharge Lasers on Self-Terminated Transitions of Metal Vapors [in Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  3. V. M. Batenin, V. V. Buchanov, M. A. Kazaryan, et al., Lasers on Self-Terminated Transitions of Metal Atoms [in Russian], Nauchnaya Kniga (1998).

  4. C. E. Little, Metal Vapour Lasers. Physics, Engineering and Application, New York (1999).

  5. A. G. Grigor’yants, M. A. Kazaryan, and N. A. Lyabin, Copper-Vapor Lasers. Design, Characteristics, and Application [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  6. A. N. Soldatov, V. F. Fedorov, and N. A. Yudin, Kvant. Elektron., 21, 733–734 (1994).

    Google Scholar 

  7. N. A. Yudin, V. M. Klimkin, V. E. Prokop’ev, and V. T. Kalaida, Russ. Phys. J., 42, No. 8, 709–713 (1999).

    Article  Google Scholar 

  8. R. J. Carman, D. J. W. Brown, and J. A. Piper, IEEE J. Quantum Electron., 30, 1876–1895 (1994).

    Article  ADS  Google Scholar 

  9. A. N. Soldatov, Contemporary Problems of Optics and Spectroscopy, Yu. S. Makushkin, G. V. Mayer, and A. M. Yancharina, eds. [in Russian], Tomsk State University, Tomsk (2001).

    Google Scholar 

  10. Yu. A. Piotrovskii, N. M. Reutova, and Yu. A. Tolmachev, Opt. Spektrosk., 7, No. 1, 99–104 (1984).

    Google Scholar 

  11. A. A. Isaev, V. T. Mikhkel’soo, G. G. Petrash, et al., Kvant. Elektron., 15, 2510–2513 (1988).

    Google Scholar 

  12. N. A. Yudin, Atmos. Ocean. Optics, 17, No. 8, 614–619 (2004).

    Google Scholar 

  13. P. A. Bokhan, V. I. Silant’ev, and V. I. Solomonov, Kvant. Elektron., 7, 1264–1269 (1980).

    Google Scholar 

  14. G. P. Hogan and C. E. Webb, Opt. Commun., 117, 570–579 (1995).

    Article  ADS  Google Scholar 

  15. K. I. Zemskov, A. A. Isaev, and G. G. Petrash, Kvant. Elektron., 27, 183–187 (1999).

    Google Scholar 

  16. G. S. Evtushenko, I. D. Kostyrya, V. B. Sukhanov, et al., Kvant. Elektron., 31, 704–708 (2001).

    Article  Google Scholar 

  17. N. A. Yudin, V. B. Sukhanov, T. A. Gubarev, and G. S. Evtushenko, Kvant. Elektron., 38, 23–28 (2008).

    Article  Google Scholar 

  18. N. A. Yudin, Kvant. Elektron., 32, 815–819 (2002).

    Article  Google Scholar 

  19. A. N. Soldatov, A. G. Filonov, A. S. Shumeiko, et al., SPIE, 5483, 252–261 (2004).

    Article  ADS  Google Scholar 

  20. A. N. Soldatov, Yu. P. Polunin, A. S. Shumeiko, and I. V. Sidorov, The 7-th Int. Symp. Laser Physics and Laser Technologies, Tomsk, Russia (2004) pp.202–207.

    Google Scholar 

  21. J. D. Shipman, Traveling Wave Excitation of High Power Gas Lasers, Appl. Phys. Lett., 10, No. 1, 3–4 (1967).

    Article  ADS  Google Scholar 

  22. A. G. Abramov, E. I. Asinovskii, and L. M. Vasilyak, Kvant. Elektron., 10, 1824–1828 (1983).

    Google Scholar 

  23. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Usp. Fiz. Nauk, 164, 263–285 (1994).

    Article  Google Scholar 

  24. A. N. Soldatov, N. A. Yudin, Yu. P. Polunin, et al., Russ. Phys. J., 51, No. 1, 5–9 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Yudin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 79–87, December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soldatov, A.N., Yudin, N.A., Vasilieva, A.V. et al. The strontium-vapor laser pumping efficiency under running-wave excitation. Russ Phys J 51, 1334–1343 (2008). https://doi.org/10.1007/s11182-009-9186-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-009-9186-7

Keywords

Navigation