Skip to main content
Log in

High-temperature superelasticity in CoNiGa, CoNiAl, NiFeGa, and TiNi monocrystals

  • Published:
Russian Physics Journal Aims and scope

The influence of the crystal orientation on the thermoelastic martensitic transformations developing under load was investigated for Co49Ni21Ga30, Co40Ni33Al27, Co35Ni35Al30, Ni54Fe19Ga27, and Ti49.4Ni50.6 (аt. %) monocrystals. It has been shown that the superelastic temperature range depends on the crystal orientation and reaches a maximum for [001]-oriented crystals. In monophase crystals of Co49Ni21Ga30, Co40Ni33Al27, Co35Ni35Al30, and Ni54Fe19Ga27 (at. %), segregation of dispersion particles takes place at test temperatures T > 623 K. A criterion for high-temperature superelasticity has been proposed which implies the attainment of high strength of the high-temperature phase due to a proper choice of the crystal orientation, deviation from stoichiometry, and segregation of dispersion particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Otsuka, K. Simidzu, U. Sudzuki, et al., Shape Memory Alloys [ed. by H. Funakubo, Russian transl.], Metallurgia, Moscow (1990).

    Google Scholar 

  2. K. Otsuka and X. Ren, Prog. Mater. Sci., 50, 511–678 (2005)

    Article  Google Scholar 

  3. K. Otsuka and C. M. Wayman, Shape Memory Materials, Cambridge University Press (1998).

  4. V. V. Kokorin, Martensitic Transformations in Inhomogeneous Solid Solutions [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  5. R. F. Hamilton, H. Sehitoglu, Y. Chumlyakov, and H. J. Maier, Acta Mater., 52, 3383–3402 (2004).

    Article  Google Scholar 

  6. Yu. I. Chumlyakov, I. V. Kireeva, E. Yu. Panchenko, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 62–73 (2003).

  7. E. Hornbogen, V. Mertinger, and D. Wurzel, Scripta Mater., 44, 171–178 (2001).

    Article  Google Scholar 

  8. Yu. I. Chumlyakov, I. V. Kireeva, I. Karaman, et al., Rus. Phys. J., No. 9, 893–911 (2004).

  9. M. Wuttig, J. Li, and C. Craciunescu, Scripta Mater., 44, 2393–2397 (2001).

    Article  Google Scholar 

  10. K. Oikawa, T. Ota, F. Gejima, et al., Mater. Trans., 42, 2472–2475 (2001).

    Article  Google Scholar 

  11. J. Dadda, H. J. Maier, I. Karaman, et al., Scripta Mater., 55, 663–666 (2006).

    Article  Google Scholar 

  12. J. Dadda, H. J. Maier, I. Karaman, et al., Philos. Mag., 87, 2313–2322 (2007).

    Article  ADS  Google Scholar 

  13. J. Dadda, H. J. Maier, I. Karaman, et al., Metallurg. Mater. Trans., 39, 2026–2039 (2008).

    Article  Google Scholar 

  14. V. A. Chernenko, J. Pons, E. Gesari, and I. K. Zasimchuk, Scripta Mater., 50, 225–229 (2004).

    Article  Google Scholar 

  15. C. Craciunescu, Y. Kishi, T. A. Lograsso, and M. Wuttig, Ibid., 47, 285–288 (2002).

    Google Scholar 

  16. K. Oikawa, L. Wulff, T. Iijima, et al., Appl. Phys. Lett., 79, 3290–3293 (2001).

    Article  ADS  Google Scholar 

  17. Y. Tanaka, K. Oikawa, Y. Sutou, et al., Mater. Sci. Eng., 438440, 1054–1060 (2006).

    Google Scholar 

  18. C. Efstathiou, H. Sehitoglu, A. J. Wagoner Johnson, et al., Scripta Mater., 51, 979–985 (2004).

    Article  Google Scholar 

  19. H. E. Karaca, I. Karaman, Y. I. Chumlyakov, et al., Ibid., 261–266.

  20. R. F. Hamilton, H. Sehitoglu, C. Efstathiou, et al., Ibid., 53, 131–136 (2005).

    Google Scholar 

  21. H. E. Karaca, I. Karaman, D. C. Lagougas, et al., Ibid., 49, 831–836 (2003).

    Google Scholar 

  22. E. Yu. Panchenko, A. V. Ovsyannikov, Yu. I. Chumlyakov, et al., Materialovedenie, No. 12, 6–10 (2006).

  23. R. F. Hamilton, C. Efstathiou, H. Sehitoglu, and Y. Chumlyakov, Scripta Mater., 2–5 (2005).

  24. H. Morito, A. Fujita, K. Oikawa, et al., Appl. Phys. Lett., 90, 201–203 (2007).

    Article  Google Scholar 

  25. R. Santamarta, J. Font, J. Muntasell, et al., Scripta Mater., 1–4 (2006).

  26. R. F. Hamilton, H. Sehitoglu, C. Efstathiou, and H. J. Maier, Acta Mater., 1–10 (2007).

  27. Y. Li, C. Jiang, T. Liang, et al., Scripta Mater., 1255–1258 (2003).

  28. P. Chen and X. X. Zhang, Solid State Commun., 143, 255–259 (2007).

    Article  ADS  Google Scholar 

  29. C. Segui, J. Pons, E. Cesari, and J. Dutkiewicz, Mater. Sci. Eng., 67–71 (2006).

  30. K. Oikawa, T. Omori, R. Kainuma, and K. Ishida, JMMM, 272, 2043–2044 (2004).

    ADS  Google Scholar 

  31. F. Masdeu, J. Pons, C. Seguir, et al., Ibid., 272, 1–4 (2004).

    Google Scholar 

  32. Y. Sutou, N. Kamiya, T. Omori, et al., Appl. Phys. Lett., 84, 1275–1277 (2004).

    Article  ADS  Google Scholar 

  33. D. Y. Li and L. Q. Chen, Acta Mater., 45, 2435–2442 (1997).

    Article  Google Scholar 

  34. Yu. I. Chumlyakov, E. Yu. Panchenko, I. V. Kireeva, et al., Dokl. RAN, 385, No. 2, 181–185 (2002).

    Google Scholar 

  35. M. Nishida, C. M. Wayman, and A. Chiba, Metallography, No. 21, 275–291 (1988).

  36. J. Khalil-Allafi, A. Dlouhy, and G. Eggeler, Acta Mater., 52, 4351–4362 (2004).

    Article  Google Scholar 

  37. S. Ii, K. Yamauchi, Y. Maruhashi, and M. Nishida, Scripta Mater., 49, 723–727 (2003).

    Article  Google Scholar 

  38. J. X. Zhang, M. Sato, and A. Ishida, Acta Mater., 54, 1185–1198 (2006).

    Article  Google Scholar 

  39. E. Yu. Panchenko, Yu. I. Chumlyakov, A. V. Ovsyannikov, and I. Karaman, Pis’ma Zh. Tekh. Fiz., 33, Issue 13, 32–39 (2007).

    Google Scholar 

  40. H. Sehitoglu, J. Jun, X. Zhang, et al., Acta Мater., 49, 3609–3620 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Chumlyakov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10. pp. 19–37. October, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chumlyakov, Y.I., Kireeva, I.V., Panchenko, E.Y. et al. High-temperature superelasticity in CoNiGa, CoNiAl, NiFeGa, and TiNi monocrystals. Russ Phys J 51, 1016–1036 (2008). https://doi.org/10.1007/s11182-009-9143-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-009-9143-5

Keywords

Navigation