Skip to main content
Log in

Gamma-ray detectors based on GaAs<Cr> for nanostructural investigations

  • Published:
Russian Physics Journal Aims and scope

The progress in nanotechnologies has been largely due to the advent of a new generation of gamma-ray sources and position detectors, which can ensure both coordinate and temporal measurements within the nanoand femtoranges. The paper offers scientific and engineering solutions related to designing detector materials and structures for detecting single quanta of x- and γ-rays and high-energy charged particles. These are multielement position detectors of a new generation for nanostructure imaging and examination in gamma rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Meshkov, E. L. Saldin, E. A. Schneidmiller, et al., Perspective of DESY for the fourth generation SR facility, EPAC, 660–663 (2000).

  2. Y. Holler, A. Chesnov, E. Matyushevsky, et al., Magnetic measurements of the FLASH infrared undulator, FEL 07, Novosibirsk, 2007.

  3. J. Bittner, J. Feldhaus, U. Hah, et al., MCP-based photon detector with extended wavelength range for FLASH FEL 07, Novosibirsk, 2007.

  4. R. Abeda, M. Altarelli, R. Brinkmann, et al., XFEL The European X-ray Free Electron Laser. Technical design report, DESY, 097, 2006.

  5. Physical Encyclopaedia, (A. M. Prokhorov, ed.), Great Russian Encyclopaedia, Moscow, 1995.

  6. ATLAS Inner Detector Technical Design Report, CERN/LHCC/97-16, ATLAS TDR 4, 30, 1997.

    Google Scholar 

  7. Radiation Imaging Detectors, (K. M. Smith and J. Visschers, eds.), Proc. 3rd Intern. Workshop, Amsterdam, The Netherlands, 2002.

  8. V. B. Chmill, A. V. Chuntonov, S. S. Khludkov, et al., Nucl. Instrum. Methods Phys. Res., A395, 65–70 (1997).

    ADS  Google Scholar 

  9. S. S. Khludkov, L. S. Okaevitch, A. I. Potapov, and O. P. Tolbanov, Ibid., A395, 132–133 (1997).

    Google Scholar 

  10. S. S. Khludkov, O. B. Koretskaya, L. S. Okaevitch, et al., Ibid., A410, 36–40 (1998).

    Google Scholar 

  11. V. B. Chmill, A. V. Chuntonov, Falaleev, et al., Nucl. Instrum. Methods Phys. Res., A410, 54–60 (1998).

    Google Scholar 

  12. V. B. Chmill, A. V. Chuntonov, S. S. Khludkov, et al., Nucl. Instrum. Methods Phys. Res., A415, 247–250 (1998).

    Google Scholar 

  13. G. I. Ayzeshtat, A. P. Vorob’ev, O. B. Koretskaya, et al., Elektron. promyshl., No. 1–2, 102–106 (1998).

  14. D. L. Budnitskii, O. P. Tolbanov, and S. S. Khludkov, Russ. Phys. J., No. 8, 768–772 (1998).

  15. O. P. Tolbanov, GaAs structures compensated with deep centers, WIRESCRIPT Journal, CYEN Technologies SRL (1999).

  16. V. B. Chmill, A. V. Chuntonov, A. G. Kholodenko, et al., Nucl. Instr. Methods Phys. Res., A438, 362–367 (1999).

    ADS  Google Scholar 

  17. G. I. Ayzeshtat, V. G. Kanaev, A. V. Khan, et al., Ibid., A448, 188–189 (2000).

    Google Scholar 

  18. G. I. Ayzeshtat, O. P. Tolbanov, and A. P. Vorob’ev, Ibid., A466, 1–8 (2001).

    Google Scholar 

  19. G. I. Ayzeshtat, N. N. Bakin, D. L. Budnitskii, et al., Nucl. Instrum. Methods Phys. Res., A466, 25–32 2001).

    ADS  Google Scholar 

  20. D. L. Budnitskii, V. P. Germogenov, et al., Nucl. Instrum. Methods Phys. Res., A466, 33–38 (2001).

    ADS  Google Scholar 

  21. G. I. Ayzeshtat, V. G. Kanaev, A. V. Khan, et al., Ibid., A466, 162–167 (2001).

    Google Scholar 

  22. G. I. Ayzeshtat, D. L. Budnitskii, O. B. Koretskaya, et al., Ibid., A466, 96–101 (2001).

    Google Scholar 

  23. G. I. Ayzeshtat, D. L. Budnitskii, O. B. Koretskaya, et al., Ibid., A494, 120–127 (2002).

    Google Scholar 

  24. G. I. Ayzeshtat, O. P. Tolbanov, and A. P. Vorob’ev, Ibid., A494, 199–204 (2002).

    Google Scholar 

  25. G. I. Ayzeshtat, M. V. Bimatov, O. P. Tolbanov, and A. P. Vorob’ev, Ibid., A494, 210–213 (2002).

    Google Scholar 

  26. S. N. Golovnia, S. A. Gorokhov, O. B. Koretskaya, et al., Ibid., A494, 223–228 (2002).

    Google Scholar 

  27. G. I. Ayzeshtat, D. Yu. Mokeev, O. P. Tolbanov, and A. V. Khan, Ibid., A494, 229–232 (2002).

    Google Scholar 

  28. G. I. Ayzeshtat, A. P. Vorob’ev, V. I. Kudravtsev, and O. P. Tolbanov, Elektron. promyshl., No. 1–2, 20–25 (2002).

  29. G. I. Ayzeshtat, M. V. Bimatov, A. P. Vorob’ev, and O. P. Tolbanov, Ibid., No. 1–2, 26–28 (2002).

  30. V. N. Brudnyi, A. I. Potapov, and O. P. Tolbanov, Ibid., No. 1–2, 29–31 (2002).

  31. G. I. Ayzeshtat, E. N. Ardashev, A. P. Vorob’ev, et al., Ibid., No. 1–2, 32–36 (2002).

  32. O. B. Koretskaya, V. A. Novikov, L. S. Okaevitch, et al., Ibid., No. 1–2, 37–39 (2002).

  33. G. I. Ayzeshtat, M. D. Vilisova, A. P. Vorob’ev, et al., Ibid., No. 1–2, 40–45 (2002).

  34. Yu. Baiko, A. P. Vorob’ev, V. P. Germogenov, et al., Ibid., No. 1–2, 46–53 (2002).

  35. M. D. Vilisova, E. P. Drugova, I. Yu. Poltavets, et al., Ibid., No. 1–2, 53–55 (2002).

  36. P. Vorob’ev, O. B. Koretskaya, L. S. Okaevitch, et al., Ibid., No. 1–2, 56–60 (2002).

  37. P. Vorob’ev, O. B. Koretskaya, L. S. Okaevitch, et al., Ibid., No. 1–2, 60–65 (2002).

  38. G. I. Ayzeshtat, D. Yu. Mokeev, O. P. Tolbanov, and A. V. Khan, Ibid., No. 1–2, 66–68 (2002).

  39. G. I. Ayzeshtat, M. V. Ardyshev, N. G. Kolin, et al., Ibid., No. 1–2, 69–72 (2002).

  40. D. L. Budnitskii, O. B. Koretskaya, V. A. Novikov, et al., Ibid., No. 1–2, 108–114 (2002).

  41. G. I. Ayzeshtat, E. A. Babichev, S. E. Baru, et al., Nucl. Instrum. Methods Phys. Res., A509, 34–40 (2003).

    Google Scholar 

  42. S. N. Golovnia, S. A. Gorokhov, O. B. Koretskaya, et al., Ibid., 40–47 (2003).

  43. D. L. Budnitskii, O. B. Koretskaya, L. S. Okaevich, et al., Nucl. Instrum. Methods Phys. Res., 268–274 (2003).

  44. G. I. Ayzeshtat, M. V. Bimatov, O. P. Tolbanov, and A. P. Vorobiev, Ibid., A509, 52–56 (2003).

    Google Scholar 

  45. G. I. Ayzeshtat, V. P. Germogenov, S. M. Guschin, et al., Nucl. Instrum. Methods Phys. Res., A531, 97–102 (2004).

    ADS  Google Scholar 

  46. J. E. Carroll, Hot Electron Microwave Generators, Cambridge University, 1970.

  47. R. Trammell and F. J. Walter, Nucl. Instrum. Methods., A76, 317–321 (1969).

    Article  Google Scholar 

  48. GaAs Detectors and Related Compounds (S. D’Auria and K. M. Smith, eds.), Proc. IV Workshop, Aberfoyle, Scotland, 1996.

  49. V. Markov, et al., Nucl. Instrum. Methods Phys. Res., A466, 14–24 (2001).

    ADS  Google Scholar 

  50. M. Rogalla and K. Runge, Ibid., A434, 44–56 (1999).

    Google Scholar 

  51. M. Rogalla, et al., Ibid., A410, 74–78 (1998).

    Google Scholar 

  52. GaAs Detectors and Related Compounds (K. M. Smith and S. D’Auria, eds.), Proc. V Workshop, Udine, Italy, 1997.

  53. Quaranta, C. Canali, A. Cavallini, et al., Nucl. Instrum. Methods Phys. Res., A380, 201–204 (1996).

  54. GaAs Detectors and Related Compounds (S. Pospisil and K. M. Smith, eds.), Proc. VI Workshop, Praha-Pruhonice, Czech Republic, 1998.

  55. Radiation Imaging Detectors (C. Frojdh and S. Petersson, eds.), Proc. 1st Workshop. Sundsvall, Sweden, 1999.

  56. Radiation Imaging Detectors (J. Ludwig and L. Feld, eds.), Proc. 2nd Workshop. Freiburg, Germany, 2000.

  57. K. M. Smith, et al., Nucl. Instrum. Methods Phys. Res., A460, 204–206 (2001).

    ADS  Google Scholar 

  58. Science, Technologies, Products, Anniversary Edition of Federal State Enterprise - Research Institute of Semiconductor Devices, Electronnaya promyshl., No. 2–3, 210 (2002).

  59. V. N. Brudnyi, Author’s Abstract of Doct. Chem. Sci. Thesis, Tomsk, 1993.

  60. K. Seeger, Semiconductor Physics, Springer Verlag, Wein, New York, 1973.

    Google Scholar 

  61. E. M. Verbitskaya, et al., Fiz. Tekh. Poluprovodn., 27, No. 12, 2052–2067 (1999).

    Google Scholar 

  62. G. Grah, R. Heller, H. Henschel, et al., Radiation hard sensors for the beam calorimeter of the ILC in: Proc. the IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC), Honolulu, Hawaii, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Tolbanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 38–52, October, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayzenshtat, G.I., Budnitskii, D.L., Mokeev, D.Y. et al. Gamma-ray detectors based on GaAs<Cr> for nanostructural investigations. Russ Phys J 51, 1037–1052 (2008). https://doi.org/10.1007/s11182-009-9141-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-009-9141-7

Keywords

Navigation