Skip to main content
Log in

Particle track phenomena and radiation power effects at the formation of radiation defects in ionic crystals

  • Published:
Russian Physics Journal Aims and scope

Abstract

The mechanisms of the radiation defect formation in alkali halide crystals are studied in an extremely wide range of the absorbed radiation dose rate (101–1012 Gy/s). It is found that the power dependence of color centers accumulation is described by a curve with a maximum at a dose rate of about 1010 Gy/s. The electron and proton track parameters for ionic crystals are calculated in the context of the theory of ionization losses of charged-particle energy. Proceeding from the concept of the charged-particle track overlap, the theoretical relations are obtained that explain the radiation power effect in all dielectric materials including alkali halide crystals. The suppression of color center accumulation in these crystals under high-power electron irradiation is due to a more regular topography of the radiation defect formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Vaisburd, ed., High-Energy Electronics of Solids [in Russian], Nauka, Novosibirsk, 1982.

    Google Scholar 

  2. A. A. Vorob’ev, Yu. M. Annenkov, A. M. Pritulov, et al., Paper No. B7337495-79, deposited at VNTIC, Moscow (1979).

  3. E. Segre, Experimental Nuclear Physics, Vol. 1 [Russian translation], Inostrannaya Literatura, Moscow (1956).

    Google Scholar 

  4. Yu. M. Annenkov and A. M. Pritulov, Fiz. Tverd. Tela, 26, No. 3, 1391(1984).

    Google Scholar 

  5. Yu. M. Annenkov, A. P. Surzhikov, A. M. Pritulov, et al., High-Temperature Superconductivity [in Russian], Tomsk (1990).

  6. Yu. M. Annenkov, T. S. Frangulian, A. M. Pritulov, and N. N. Aparov, Ogneupory, No. 5, 12 (1995).

  7. Yu. M. Annenkov, N. N. Aparov, and T. S. Frangulian, in: Abstracts of Reports at Int.Conf. Radiation Effects in Insulators, Vol. 1, Nagoya, Japan (1993).

    Google Scholar 

  8. Yu. M. Annenkov, A. P. Surzhikov, A. S. Sigov, et al., Certificate of Copyright No. 1752153 (1992).

  9. D. I. Vaisburd, A. A. Vorob’ev, and A. Melikyan, Atomnaya Energiya, 30, No. 6, 538 (1971).

    Google Scholar 

  10. Yu. M. Annenkov, Doct. Thesis in Phys.-Math. Sci., Tomsk (2002).

  11. Yu. M. Annenkov and T. S. Frangulian, Abstracts of Reports at Conf. “Polymaterials-2001,” Moscow (2001).

  12. P. D. Alekseev, Sov. Phys. J., No. 12, 134 (1969).

  13. V. P. Kuznetsov, Determination of the Defect Relaxation Time in a Proton Track from the Dependence of the Defect Yield on the Beam Intensity, Author’s Abstract Cand. Phys.-Math. Sci. Dissert., Tomsk (2002).

  14. D. I. Vaisburd and P. D. Alekseev, Sov. Phys. J., No. 11 (1971).

  15. E. K. Zavadovskaya, Yu. M. Annenkov, and T. S. Frangulian, Sov. Phys. J., No. 11 (1969).

  16. T. S. Frangulian, Investigation of Radiation Accumulation of Color Centers in KCl-KBr Solid Solutions, Author’s Abstract of Cand. Phys.-Math. Sci. Dissert., Tomsk (1971).

  17. Yu. M. Annenkov, Investigation of Electric Properties of Alkali-Halide Crystals and Their Radiation Modification, Candidate’s Dissertation in Physical and Mathematical Sciences, Tomsk (1969).

  18. A. B. Chormonov, Centers of Positron Annihilation and Positron Diagnostics of Radiation Defects in Irradiated Alkali-Halide Crystals, Author’s Abstract of Cand. Phys.-Math. Sci. Dissert., Tomsk (1987).

  19. V. K. Biller, Accumulation of the Frenkel Cation Defects in Alkali-Halide Crystals Exposed to Charged Particles, Author’s Abstract of Cand. Phys.-Math. Sci. Dissert., Tomsk (1979).

  20. Yu. M. Annenkov, V. K. Biller, Yu. I. Galanov, and T. S. Frangulian, in: Radiation-Induced Phenomena in Solids [in Russian], Sverdlovsk (1980), pp. 96–99.

  21. Yu. M. Annenkov, V. F. Stolyarenko, and T. S. Frangulian, Izv. Vyssh. Ucheb. Zaved. Fizika, No. 6, 103–105 (1981).

  22. Yu. M. Annenkov, V. F. Stolyarenko, and T. S. Frangulian, Sov. Phys. J., No. 2, 129 (1985).

  23. Yu. M. Annenkov, T. S. Frangulian, and V. F. Stolyarenko, Fiz. Tverd. Tela, 29, No. 3, 925 (1987).

    Google Scholar 

  24. Yu. M. Annenkov, T. S. Frangulian, V. F. Stolyarenko, and A. M. Gornostaev, Sov. Phys. J., No. 8 (1988).

  25. Yu. M. Annenkov, V. F. Stolyarenko, T. S. Frangulian, and Yu. I. Galanov, Vopr. Atomn. Nauki i Tekh., 4, No. 23, 77 (1982).

    Google Scholar 

  26. E. H. Weibenga, E. E. Havinga, and K. H. Boswijk, Adv. Inorg. Chem. Radiochem., 3, 133 (1961).

    Google Scholar 

  27. R. T. Williams, J. N. Bradford, and W. L. Faust, Phys. Rev., B18, No. 12, 7038 (1978).

    ADS  Google Scholar 

  28. Ch. B. Lushchik and A. Ch. Lushchik, Electron Excitation Decay and Defect Formation in Solids [in Russian], Nauka, Moscow, 1989.

    Google Scholar 

  29. P. Hovstad, Deviation from Stoichiometry, Diffusion, and Electrical Conductivity in Simple Metal Oxides [Russian translation], Mir, Moscow, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 10–21, February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annenkov, Y.M. Particle track phenomena and radiation power effects at the formation of radiation defects in ionic crystals. Russ Phys J 50, 107–119 (2007). https://doi.org/10.1007/s11182-007-0015-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-007-0015-6

Keywords

Navigation