Skip to main content
Log in

The Molecular-Dynamics Method for Different Statistical Ensembles

  • Published:
Russian Physics Journal Aims and scope

Abstract

Modifications of the molecular-dynamics method for different statistical ensembles are examined. Particular emphasis is given to the Parrinello-Rahman method wherein the volume and shape of a molecular-dynamics cell are allowed to vary with time. The latter circumstance is of great importance because it enables processes involving marked structural changes in the system to be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. V. Heerman, Computer Simulation Methods in Theoretical Physics, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo (1986).

    Google Scholar 

  2. Yu. M. Plishkin, Crystal Defects and their Computer Simulation [in Russian], Nauka, Leningrad (1980).

    Google Scholar 

  3. Computer Simulation of Defects in Metals [in Russian], Nauka, Leningrad (1990).

  4. Computer Simulation of Structural Defects in Crystals [in Russian], Nauka, Leningrad (1990).

  5. Computer Simulation of Structural Defects in Crystals [in Russian], Nauka, Leningrad (1988).

  6. V. V. Kirsanov and A. N. Orlov, Usp. Fiz. Nauk, 142, No. 2, 219–264 (1984).

    Google Scholar 

  7. N. V. Doam, Phil. Mag. A, 58, No. 1, 179–192 (1988).

    Google Scholar 

  8. H. C. Andersen, J. Chem. Phys., 72, No. 4, 2384–2393 (1980).

    Google Scholar 

  9. M. Parrinello and A. Rahman, Phys. Rev. Lett., 45, No. 14, 1196–1199 (1980).

    Google Scholar 

  10. M. Parrinello and A. Rahman, J. Appl. Phys., 52, No. 12, 7182–7187 (1981).

    Google Scholar 

  11. A. Rahman, Material Science Forum, 1, 211–222 (1984).

    Google Scholar 

  12. S. Nose, J. Chem. Phys., 81, No. 1, 511–519 (1984).

    Google Scholar 

  13. J. Ruff, A. Baranyai, E. Spohr, and K. Heinzinger, J. Non-Crystalline Solids., 117/118, No. 2, 597–600 (1990).

    Google Scholar 

  14. J. R. Ray and A. Rahman, Physica B, 150, Nos. 1–2, 250–257 (1988).

    Google Scholar 

  15. S. W. De Leeuw and M. Dixon, Phil. Mag. A, 52, No. 1, 279–287 (1985).

    Google Scholar 

  16. J. R. Ray, M. C. Moody, and A. Rahman, Phys. Rev. B, 32, No. 2, 733–735 (1985).

    Google Scholar 

  17. A. N. Orlov and Yu. V. Trushin, The Energy of Point Defects in Metals [in Russian], Energoatomizdat, Moscow (1983).

    Google Scholar 

  18. S. Kunin, Computational Physics [in Russian], Mir, Moscow (1992).

    Google Scholar 

  19. A. I. Potekaev, I. I. Naumov, V. V. Kulagina, et al., Natural Long-Period Nanostructures [in Russian], Publishing House of Scientific and Technical Literature, Tomsk (2002).

    Google Scholar 

  20. A. I. Potekaev, A. A. Klopotov, E. V. Kozlov, and V. V. Kulagina, Weakly Stable Pretransition Structures in Titanium Nickelide [in Russian], Publishing House of Scientific and Technical Literature, Tomsk (2004).

    Google Scholar 

  21. A. I. Potekaev, A. M. Glezer, V. N. Udodov, et al., The Structural-Phase States and Properties of Metallic Systems [in Russian], Publishing House of Scientific and Technical Literature, Tomsk (2004).

    Google Scholar 

  22. V. V. Kulagina and E. F. Dudarev, Russ. Phys. J., 43, No. 6, 493–497 (2000).

    Google Scholar 

  23. V. V. Kulagina, Russ. Phys. J., 44, No. 2, 151–161 (2001).

    Google Scholar 

  24. F. P. Vasiliev, Extreme Problem Solving Methods. A Textbook [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  25. K. Ohno, K. Estarjani, and Y. Kawazoe, Computational Materials Science. From Ab Initio to Monte Carlo Methods, Springer Verlag, Berlin-Heidelberg (1999).

    Google Scholar 

  26. Mokhtar S. Basaraa and C. M. Shetty, Nonlinear Programming. Theory and Algorithms, John Wiley and Sons, New-York (1979).

    Google Scholar 

  27. A. D. Bruce and R. A. Cowley, Structural Phase Transformations, Taylor & Francis Ltd., London (1981).

    Google Scholar 

  28. S. C. Moss, Mater. Sci. Eng. A, 127, No. 2, 187–188 (1990).

    Google Scholar 

  29. P. C. Clapp, Mater. Sci. Eng. A, 127, No. 2, 189–195 (1990).

    Google Scholar 

  30. J. W. Christian, Mater. Sci. Eng. A, 127, No. 2, 215–227 (1990).

    Google Scholar 

  31. G. R. Barsch, J. A. Krumhansl, Z. E. Tanner, and M. Wuttig, Scripta Met., 21, No. 9, 1257–1262 (1987).

    Google Scholar 

  32. V. G. Pushin and V. V. Kondratiev, Fiz. Met. Metalloved., 78, No. 11, 40–61 (1994).

    Google Scholar 

  33. Y. Yamada, Y. Noda, V. Takimito, and K. Furukawa, J. Phys. Soc. Jpn., 54, No. 8, 2940–2947 (1985).

    Google Scholar 

  34. Y. Yamada, Met. Trans. A, 19, No. 4, 777–781 (1988).

    Google Scholar 

  35. D. Y. Li, X. F. Wu, T. Ko, Phil. Mag. A, 63, No. 3, 603–616 (1991).

    Google Scholar 

  36. W. S. Owen, Mater. Sci. Eng. A, 127, No. 2, 197–204 (1990).

    Google Scholar 

  37. L. E. Tanner and M. Wuttig, Mater. Sci. Eng. A, 127, No. 2, 137–144 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 16–23, February, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulagina, V.V., Eremeev, S.V. & Potekaev, A.I. The Molecular-Dynamics Method for Different Statistical Ensembles. Russ Phys J 48, 122–130 (2005). https://doi.org/10.1007/s11182-005-0094-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-005-0094-1

Keywords

Navigation