Skip to main content
Log in

Special features of the order-disorder phase transformation and the role of associated antiphase boundaries

  • Published:
Russian Physics Journal Aims and scope

Abstract

Experimental investigations of the states of long-range order in alloys with the L12, L12(M), L12(MM), and D1a superlattices are discussed. The results obtained enable basic mechanisms involved in the thermal order-disorder transformation to be found and demonstrate an important role of antiphase boundaries in this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Krivoglaz and A. A. Smirnov, The Theory of Ordering Alloys [in Russian], Fizmatgiz., Moscow (1957).

    Google Scholar 

  2. N. M. Matveeva and É. V. Kozlov, Ordered Phases in Metallic Systems [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  3. S. V. Starenchenko and V. A. Starenchenko, Vestn. Tamb. Un-ta, Ser. Yestestv. i Tekhn., 3, No.3, 233–236 (1998).

    Google Scholar 

  4. L. E. Popov, É. V. Kozlov, and N. S. Golosov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 55–66 (1966).

  5. S. V. Starenhenko, Candidate’s Dissertation in Physical and Mathematical Sciences, Tomsk Institute of Engineering and Building, Tomsk (1981), 262 pp.

    Google Scholar 

  6. A. M. Glezer and B. V. Molotilov, Disordering and Deformation in Iron Alloys [in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  7. N. S. Golosov and B. V. Dudka, The Structural Mechanism of Phase Transformations of Metals and Alloys [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  8. A. A. Smirnov, The Molecular-Kinetic Theory of Metals [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  9. A. G. Khachaturyan, The Theory of Phase Transitions and the Structure of Solid Solutions [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  10. A. Taylor, X-Ray Metallography [Russian translation], Metallurgiya, Moscow (1965).

    Google Scholar 

  11. W. L. Bragg and E. J. Williams, Proc.Royal Soc., A 145, No.a 855, 699–730 (1934).

    Google Scholar 

  12. A. Gangulee and S. C. Moss, J. Appl. Cryst., 1, No.1, 61–67 (1968).

    Google Scholar 

  13. J. A. Westrook (ed.), Intermetallic Compounds, John Wiley & Sons, Inc., New York — London — Sydney (1967).

    Google Scholar 

  14. É. V. Kozlov and S. V. Starenchenko, Phys. Met. Metalloved, 48, No.6, 1220–1226 (1979).

    Google Scholar 

  15. M. Tachiki and K. Teramoto, J. Phys. Chem. Solids, 27, 335–348 (1967).

    Google Scholar 

  16. H. Iwasaki and S. Ogawa, J. Phys. Soc. Jap., 22, No.1, 158–164 (1967).

    Google Scholar 

  17. B. L. Averbach et al. (eds), Fracture, in: Proc. Int. Conf., April 12–16, 1959, Swampscott, Massachusetts (1959).

  18. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, Radiographic and Electron-Optical Analyses [in Russian], Metallurgiya, Moscow (1970).

    Google Scholar 

  19. P. Wright and K. T. Coddard, Acta. Met., 7, 757–761 (1959).

    Google Scholar 

  20. B. W. Baterman, J. Appl. Phys., 28, No.5., 556–561 (1957).

    Google Scholar 

  21. S. V. Starenchenko and V. A. Starenchenlo, Proc. Int. Conf. Solid-Solid Phase Transformation’99 (JIMIC-3), M. Koiwa, K. Otsuka, and T. Miyazaki (eds.), The Japan Institute of Metals (1999), pp. 349–352.

  22. R. W. Cahn, Acta Met. Sinica, 8, Nos. 4–6, 261–272 (1995).

    Google Scholar 

  23. X. Schubert, B. Kiefer, M. Wilkens, and R. Haufler, Z. Metallk, 46, 692–715 (1955).

    Google Scholar 

  24. D. Broddin, G. Van Tendeloo, and S. Amerinckx, J. Phys. Condens. Matter, 2, 3459–3477 (1990).

    Google Scholar 

  25. C. Leroux, A. Loiseau, M. C. Cadeville, et al., J. Phys. Condens. Matter, No. 2, 3479–3495 (1990).

  26. C. Ricolleau, A. Loiseau, F. Ducastelle, and R. Caudron, Phys. Rev. Lett., 68, No.24, 3591–3594 (1992).

    Google Scholar 

  27. S. V. Starenchenko, Doctoral Thesis in Physical and Mathematical Sciences, Tomsk State University of Architecture and Building, Tomsk (2003), 592 pp.

    Google Scholar 

  28. M. Ohno and T. Mohri, Mater. Transactions, 42, No.10, 1–9 (2001).

    Google Scholar 

  29. M. Ohno and T. Mohri, Mat. Scin. Eng., A312, 50–56 (2001).

    Google Scholar 

  30. T. Mohri, G. Ichikawa, and T. Suzuki, J. Alloys and Compounds, 247, 98–103 (1997).

    Google Scholar 

  31. O. V. Andrukhova, N. V. Lomskikh, N. M. Gurova, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 43, No.11, Supplement, 5–10 (2000).

    Google Scholar 

  32. N. M. Gurova, O. V. Andrukhova, N. V. Lomskikh, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11,Supplement, 11–14 (2000).

    Google Scholar 

  33. O. V. Andrukhova, N. M. Gurova, N. V. Lomskikh, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8,Supplement, 30–36 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 48–58, October 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starenchenko, S.V., Kozlov, É.V. Special features of the order-disorder phase transformation and the role of associated antiphase boundaries. Russ Phys J 47, 1015–1025 (2004). https://doi.org/10.1007/s11182-005-0016-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-005-0016-2

Keywords

Navigation