Skip to main content
Log in

Strength and wear resistance of nanocrystal structures on friction surfaces of steels with martensitic base

  • Published:
Russian Physics Journal Aims and scope

Abstract

The formation of nanocrystal α-martensite structures (NCS) in the surface layers of carbon and alloy steels under conditions of sliding friction and abrasion is investigated by electron microscopic, x-ray, and metallographic methods. The influence of the dynamic strain aging of martensite and strain dissolution of the carbide phase on the strength (microhardness and shear resistance) and tribological properties (wear resistance and friction coefficient) of nanocrystal surface layers of steels with martensitic base is demonstrated. The role of nanocrystal martensite in adhesive, abrasive, and fatigue wear resistance of steels is examined. The negative influence of the oxidizing air environment on the effective strength and wear resistance of friction NCS is demonstrated. The increased resistance of friction NCS of high-carbon steel to softening after tempering and friction heating is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. V. Wilson (1957) Acta Metall. 5 IssueID6 293–302

    Google Scholar 

  2. D. Kalish M. Kohen (1970) Mater. Sci. Eng. 6 156–166

    Google Scholar 

  3. A. H. Cottrell (1958) Disocations and Plastic Flow in Crystals Metallurgiya Moscow

    Google Scholar 

  4. L. G. Korshunov A. V. Makarov N. L. Chernenko S. P. Nasonov (1996) Fiz. Met. Metalloved. 82 IssueID2 38–48

    Google Scholar 

  5. L. G. Korshunov A. V. Makarov V. M. Schastlivtsev et al. (1988) Fiz. Met. Metalloved. 66 IssueID5 948–957

    Google Scholar 

  6. L. G. Korshunov A. V. Makarov N. L. Chernenko (1994) Fiz. Met. Metalloved. 78 IssueID4 128–146

    Google Scholar 

  7. A. V. Makarov L. G. Korshunov N. L. Chernenko et al. (1989) Fiz. Met. Metalloved. 68 IssueID1 126–132

    Google Scholar 

  8. A. V. Makarov L. G. Korshunov N. L. Chernenko et al. (1991) Trenie Iznos 12 IssueID5 870–878

    Google Scholar 

  9. P. Heilmann W. A. Clark D. A. Rigney (1983) Acta Metall. 31 IssueID8 1293–1305

    Google Scholar 

  10. V. A. Likhachev V. E. Panin E. É. Zasimchuk (1989) Cooperative Strain Processes and Strain Localization Naukova Dumka Kiev

    Google Scholar 

  11. L. G. Korshunov (1992) Fiz. Met. Metalloved. 8 3–21

    Google Scholar 

  12. I. P. Hirth D. A. Rigney (1983) Disloc. Solids 6 IssueID25 3–54

    Google Scholar 

  13. A. V. Makarov L. G. Korshunov G. L. Khimich et al. (1987) Trenie Iznos 8 IssueID2 293–301

    Google Scholar 

  14. A. V. Makarov L. G. Korshunov V. B. Vykhodets et al. (1999) Structure and Properties of Nanocrystal Materials Publishing House of the Ural Branch of the Russian Academy of Sciences Ekaterinburg 169–177

    Google Scholar 

  15. F. P. Bowden D. Taibor (1968) Friction and Lubrication of Solids Mashinostroenie Moscow

    Google Scholar 

  16. A. V. Makarov L. G. Korshunov I. L. Solodova (2000) Trenie Iznos 21 IssueID5 501–510

    Google Scholar 

  17. L. G. Korshunov A. V. Makarov N. L. Chernenko (2000) The Phys. Met. Metallogr. 90 IssueIDSuppl.1 S48–S58

    Google Scholar 

  18. A. V. Suyazov M. P. Usikov A. G. Khachaturyan (1973) Fiz. Met. Metalloved. 36 IssueID5 1033–1042

    Google Scholar 

  19. V. G. Gavrilyuk (1987) Distribution of Carbon in Steel Naukova Dumka Kiev

    Google Scholar 

  20. H. Swahn P. C. Becker O. Vingsbo (1976) Metallurg. Trans. 7A IssueID8 1099–1110

    Google Scholar 

  21. Yu. A. Geller (1975) Tool Steel Metallurgiya Moscow

    Google Scholar 

  22. L. G. Korshunov I. N. Bogachev Yu. I. Averin (1980) Fiz. Met. Metalloved. 49 IssueID1 113–120

    Google Scholar 

  23. A. V. Makarov L. G. Korshunov V. M. Schastlivtsev (2003) Fiz. Met. Metalloved. 96 IssueID3 101–112

    Google Scholar 

  24. A. V. Makarov L. I. Anisimova L. G. Korshunov (2002) Trenie Iznos 23 IssueID5 543–550

    Google Scholar 

  25. N. S. Stoloff (1976) Fracture, Vol. 6: Fracture of Metals Metallurgiya Moscow 11–89

    Google Scholar 

  26. A. V. Makarov S. P. Nasonov L. G. Korshunov et al. (1997) Fiz. Met. Metallodev. 83 IssueID2 128–137

    Google Scholar 

  27. L. G. Korshunov N. L. Chernenko (2002) Fiz. Met. Metalloved. 94 IssueID6 53–61

    Google Scholar 

  28. A. V. Makarov and L. G. Korshunov, Method of Thermal Treatment of High-Speed Steel, RF Patent No. 2059000, Bull. No. 12 (1996).

  29. A. V. Makarov, L. G. Korshunov, A. L. Osintseva, and I. Yu. Chuprakova, Method of manufacturing of parts of a drilling tool, Certificate of Copyright No. 1580814.

  30. L. G. Korshunov, A. V. Makarov, and A. G. Prokhorov, Method of manufacturing of parts of drilling bits, Certificate of Copyright No. 1612597.

  31. A. V. Makarov, L. G. Korshunov, and A. L. Osintseva, Method of treatment of steelworks, RF Patent No. 2194773, Bull. No. 35 (2002).

  32. A. V. Makarov L. G. Korshunov (2003) Trenie Iznos 24 IssueID3 301–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 65–80, August, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, A.V., Korshunov, L.G. Strength and wear resistance of nanocrystal structures on friction surfaces of steels with martensitic base. Russ Phys J 47, 857–871 (2004). https://doi.org/10.1007/s11182-005-0005-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-005-0005-5

Keywords

Navigation