Skip to main content

Advertisement

Log in

The structure and phase composition of stabilized zirconia-based nanosystems exposed to shock-wave treatment

  • Published:
Russian Physics Journal Aims and scope

Abstract

The special features of the structure and phase composition of nanocrystalline zirconia-based powders subjected to shock-wave treatment are studied. The investigations show that zirconia with small amounts of yttria and/or alumina is in nanocrystalline and quasi-amorphous states representing a nonequilibrium solid solution of ZrO2 (Y, Al) and that an increase in the monoclinic phase abundance is associated with a reduction in the critical size of tetragonal crystallites due to an accumulation of lattice microdistortions. The monoclinic phase in powders with yttria and alumina additions is not formed even with shock compression at pressures up to 20 GPa. This is attributed to the fact that the resultant lattice microdistortion level is inadequate to destabilize the nanocrystalline tetragonal phase. Relaxation of microdistortions on annealing causes the critical size of tetragonal crystallites to increase. As this takes place, the monoclinic phase is converted into the tetragonal one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. L. Messing, Shi-Chang Zang, and G. V. J-Ayanti, J. Amer. Ceram. Soc., 76, No. 11, 2707–2726 (1993).

    Google Scholar 

  2. M. I. Kabanova, V. A. Dubok, S. A. Nochevkin, et al., Fiz. Goreniya i Vzryva, No. 9, 69–74 (1991).

  3. L. M. Lityagina, S. S. Kabalkina, T. A. Pashkina, et al., Fiz.Tverd. Tela, 20, No. 11, 3475–3477 (1978).

    Google Scholar 

  4. S. N. Kulkov, V. F. Nesterenko, P. V. Korolev, et al., Fiz. Goreniya i Vzryva, 29, No. 6, 66–72 (1993)

    Google Scholar 

  5. S. N. Kulkov, P. V. Korolev, A. G. Melnikov, et al., Russ. Phys. J., 38, No. 1, 42–45 (1995).

    Google Scholar 

  6. R. C. Garvie and P. S. Nicholson, J. Amer. Ceram. Soc., 55, No. 6, 303–305 (1972).

    Google Scholar 

  7. G. K. Williamson and W. H. Hall, Acta Metall., 1, 22–31 (1953).

    Google Scholar 

  8. B. Morosin and R. A. Graham, in: Shock Waves in Condensed Matter, J. R. Asay, R. A. Graham, and G. K. Straub (eds.), Elsevier Science Publishers (1984), pp. 355–362.

  9. Yu. F. Ivanov, V. V. Lopatin, and V. S. Dedkov, Russ. Phys. J., 37, No. 1, 95–101 (1994).

    Google Scholar 

  10. R. Prûmmer, Explosivverdichtung Pulvriger Substanzen: Grundlager, Verfahren, Ergebnisse, Springer-Verlag, Berlin-Heidelberg (1987).

    Google Scholar 

  11. E. A. Faulkner, Phil. Mag., 6, 519–521 (1960).

    Google Scholar 

  12. W. F. Hammeter, J. R. Hellman, R. A. Graham, and B. Morosin, in: Shock Waves in Condensed Matter, J. R. Asay, R. A. Graham, and G. K. Straub (eds.), Elsevier Science Publishers (1984), pp. 391–394.

  13. D. T. Livey and P. Murray, J. Amer. Ceram. Soc., 39, No. 11, 363–372 (1956).

    Google Scholar 

  14. E. D. Witney, J. Amer. Ceram. Soc., 45, No. 12, 612–613 (1962).

    Google Scholar 

  15. V. F. Petrunin, Zhur. Vsesoyuz Khimich. Obshch. Im. D. I. Mendeleev, 36, No. 2, 146–150 (1991).

    Google Scholar 

  16. V. F. Petrunin, A. G. Ermolaev, A. V. Burkhanov, et al., Poroshk.Metallurg., No. 3, 47–52 (1989).

  17. D.-J. Kim, J. Amer. Ceram. Soc., 73, No. 1, 115–120 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 61–70, September, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkov, S.N. The structure and phase composition of stabilized zirconia-based nanosystems exposed to shock-wave treatment. Russ Phys J 47, 954–963 (2004). https://doi.org/10.1007/s11182-004-0006-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-004-0006-9

Keywords

Navigation