Skip to main content
Log in

Germline Mutations of Tetranucleotide DNA Repeats in Families with Normal Children and Reproductive Pathology

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

We have previously reported a high rate of tetranucleotide DNA repeat mutations, including mutations of both germline and somatic origin, in spontaneous human abortions. To analyze in more detail mutational microsatellite (MS) variability in meiosis and its possible association with disturbed embryonic development, we have conducted a comparative study of mutation rates of a panel of 15 autosomal tetranucleotide MSs in 55 families with healthy children and in 103 families that have had spontaneous abortions with normal karyotypes. In the families with miscarriage, the gametic MS mutation rate was higher than in the families with normal reproductive function (4.36 × 10−3 versus 2.32 × 10−3 per locus per gamete per generation), but this difference was statistically nonsignificant (P = 0.25). No association of MS mutations with familiar miscarriage was found. Mutations at the MS loci studied were recorded almost 3 times as often in spermatogenesis as in oogenesis, which is likely to result from a greater number of DNA replication cycles in male germline cell precursors than in female ones. Mutations increasing and reducing the MS sequence length appeared at virtually the same rate. Changes in MS DNA sequence length per one repeated element, i.e., single-step mutations (93% of cases) exceeded all other events of allele length change. The highest number of mutations (81.2%) was found in longer alleles. This distribution of mutations by size, direction, and parental origin corresponds to the multistep mutation model of their emergence via mechanism of DNA strand slippage during replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Weber, J.L. and Wong, C., Mutation of Human Tandem Repeats, Hum. Mol. Genet., 1993, vol. 2, pp. 1123–1128.

    PubMed  Google Scholar 

  2. Brinkmann, B., Klintschar, M., Neuhuber, F., et al., Mutation Rate in Human Microsatellites: Influence of the Structure and Length of the Tandem Repeat, Am. J. Hum. Genet., 1998, vol. 62, pp. 1408–1415.

    Article  PubMed  Google Scholar 

  3. Xu, X., Peng, M., Fang, Z., and Xu, X., The Direction of Microsatellite Mutations Is Dependent upon Allele Length, Nat. Genet., 2000, vol. 24, pp. 396–399.

    Article  PubMed  Google Scholar 

  4. Aaltonen, L.A., Peltomaki, P., Leach, F.S., et al., Clues to the Pathogenesis of Familial Colorectal Cancer, Science, 1993, vol. 260, pp. 812–816.

    PubMed  Google Scholar 

  5. Thibodeau, S.N., Bren, G., and Schaid, D., Microsatellite Instability in Cancer of the Proximal Colon, Lancet, 1993, vol. 260, pp. 816–819.

    Google Scholar 

  6. Spandidos, D.A., Koumantakis, E., Sifakis, S., and Sourvinos, G., Microsatellite Mutations in Spontaneously Aborted Embryos, Fertil. Steril., 1998, vol. 5, pp. 892–895.

    Article  Google Scholar 

  7. Nikitina, T.V. and Nazarenko, S.A., Microsatellite DNA Mutations and Human Embryonic Mortality, Rus. J. Genet., 2000, vol. 36, no.7, pp. 796–801.

    Google Scholar 

  8. Sukhanova, N.N., Lebedev, I.N., Nikitina, T.V., et al., Structure of Chromosome Aberrations in 552 Spontaneously Aborted Embryos in the Tomsk Population, Med. Genet., 2002, vol. 1, no.6, pp. 271–276.

    Google Scholar 

  9. Nikitina, T.V., Lebedev, I.N., Sukhanova, N.N., et al., Maternal Cell Contamination of Cultures of Spontaneous Abortion Fibroblasts: Importance for Cytogenetic Analysis of Embryonic Lethality, Rus. J. Genet., 2004, vol. 40, no.7, pp. 800–809.

    Article  Google Scholar 

  10. Evdokimova, V.N., Nikitina, T.V., Lebedev, I.N., et al., About the Sex Ratio in Connection with Early Embryonic Mortality in Man, Ontogenez, 2000, vol. 31, no.4, pp. 204–210.

    Google Scholar 

  11. Brinkmann, B., Meyer, E., and Jungle, A., Complex Mutational Events at the HumD21S11 Locus, Hum. Genet., 1996, vol. 98, pp. 60–64.

    PubMed  Google Scholar 

  12. Rolf, D.A. and Bentzen, P., The Statistical Analysis of Mitochondrial DNA Polymorphisms: χ2 and the Problem of Small Samples, Mol. Biol. Evol., 1989, vol. 6, pp. 539–545.

    PubMed  Google Scholar 

  13. Lakin, G.F., Biometriya. Uchebnoe posobie dlya universitetov i pedagogicheskikh institutov (Biometrics: A Handbook for Universities and Pedagogical Institutions), Moscow: Vysshaya Shkola, 1973.

    Google Scholar 

  14. Leopoldino, A.M. and Pena, S.D., The Mutational Spectrum of Human Autosomal Tetranucleotide Microsatellites, Hum. Mutat., 2003, vol. 21, pp. 71–79.

    Article  PubMed  Google Scholar 

  15. Nikitina, T.A. and Nazarenko, S.A., Human Microsatellites: Mutation and Evolution, Rus. J. Genet., 2004, vol. 40, no.10, pp. 1065–1079.

    Article  Google Scholar 

  16. Bender, K., Beller, G., and Lautsch, S., Tetranucleotide Short Tandem Repeat Polymorphisms and Their Possible Mode of Origin, Cytogenet. Cell Genet., 1998, vol. 80, pp. 34–36.

    Article  PubMed  Google Scholar 

  17. Talbot, C.C., Avramoulos, D., Gerken, S., et al., The Tetranucleotide Repeat Polymorphism D21S1245 Demonstrates Hypermutability in Germline and Somatic Cells, Hum. Mol. Genet., 1995, vol. 4, pp. 193–199.

    Google Scholar 

  18. Mahtani, M.M. and Willard, H.F., A Polymorphic X-Linked Tetranucleotide Repeat Locus Displaying a High Rate of New Mutation: Implications for Mechanisms of Mutation at Short Tandem Repeat Loci, Hum. Mol. Genet., 1993, vol. 2, pp. 431–437.

    PubMed  Google Scholar 

  19. Chakraborty, R., Stivers, D.N., and Zhong, Y., Estimation of Mutation Rates from Parentage Exclusion Data: Applications to STR and VNTR Loci, Mutat. Res., 1996, vol. 354, pp. 41–48.

    PubMed  Google Scholar 

  20. Kayser, M., Roewer, L., Hedman, M., et al., Characteristic and Frequency of Germline Mutations at Microsatellite Loci from the Human Y Chromosome, As Revealed by Direct Observation in Father/Son Pairs, Am. J. Hum. Genet., 2000, vol. 66, pp. 1580–1588.

    Article  PubMed  Google Scholar 

  21. Holtkemper, U., Rolf, B., Honoff, C., et al., Mutation Rates at Two Human Y-Chromosomal Microsatellite Loci Using Small Pool PCR Techniques, Hum. Mol. Genet., 2001, vol. 10, pp. 629–633.

    Article  PubMed  Google Scholar 

  22. Levinson, G. and Gutman, G.A., Slipped Strand Mispairing: A Major Mechanism for DNA Sequence Evolution, Mol. Biol. Evol., 1987, vol. 4, pp. 203–221.

    PubMed  Google Scholar 

  23. Wierdl, M., Dominska, M., and Petes, T.D., Microsatellite Instability in Yeast: Dependence on the Length of the Microsatellite, Genetics, 1997, vol. 146, pp. 769–779.

    PubMed  Google Scholar 

  24. Heale, S.M. and Petes, T.D., The Stabilization of Repetitive Tracts of DNA by Variant Repeats Requires a Functional DNA Mismatch Repair System, Cell (Cambridge, Mass.), 1995, vol. 83, pp. 539–545.

    Article  PubMed  Google Scholar 

  25. Jin, P. and Warren, S.T., Understanding the Molecular Basis of Fragile X Syndrome, Hum. Mol. Genet., 2000, vol. 9, pp. 901–908.

    Article  PubMed  Google Scholar 

  26. Vogel, F. and Motulsky, A., Human Genetics, Berlin: Springer-Verlag, 1986. Translated under the title Genetika cheloveka, Moscow: Mir, 1989, vol. 2, pp. 172–176.

    Google Scholar 

  27. DiRienzo, A., Peterson, A.C., Garza, J.C., et al., Mutational Processes of Simple-Sequence Repeat Loci in Human Populations, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 3166–3170.

    PubMed  Google Scholar 

  28. Amos, W., Sawcer, S.J., Feakes, R.W., and Rubinsztein, D.C., Microsatellites Show Mutational Bias and Heterozygote Instability, Nat. Genet., 1996, vol. 13, pp. 390–391.

    Article  PubMed  Google Scholar 

  29. Sajantila, A., Lukka, M., and Syvanen, A.-C., Experimentally Observed Germline Mutations at Human Micro-and Minisatellite Loci, Eur. J. Hum. Genet., 1999, vol. 7, pp. 263–266.

    Article  PubMed  Google Scholar 

  30. Ellegren, H., Heterogeneous Mutation Processes in Human Microsatellite DNA Sequences, Nat. Genet., 2000, vol. 24, pp. 400–402.

    Article  PubMed  Google Scholar 

  31. Ellegren, H., Microsatellite Mutations in the Germline: Implications for Evolutionary Inference, Trends Genet., 2000, vol. 16, pp. 551–558.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Genetika, Vol. 41, No. 7, 2005, pp. 943–953.

Original Russian Text Copyright © 2005 by Nikitina, Lebedev, Sukhanova, Nazarenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitina, T.V., Lebedev, I.N., Sukhanova, N.N. et al. Germline Mutations of Tetranucleotide DNA Repeats in Families with Normal Children and Reproductive Pathology. Russ J Genet 41, 770–778 (2005). https://doi.org/10.1007/s11177-005-0159-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11177-005-0159-9

Keywords

Navigation