Skip to main content
Log in

The Effect of Chromatin Remodeling and Modification on RNA-Polymerase-Mediated Transcription Initiation

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

As eukaryotes are characterized by the presence of chromatin (intricately packaged DNA), special mechanisms are required for preparing the DNA template for operation of the transcription machinery. Recently, a close association between the chromatin state and transcription was found and numerous transcription factors modifying the physical and chemical chromatin state were revealed. This review presents a brief description of transcription initiation on the DNA template within chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sims, R.J. III, Mandal, S.S., and Reinberg, D., Recent Highlights of RNA Polymerase II-Mediated Transcription, Curr. Opin. Cell. Biol., 2004, vol. 16, pp. 263–271.

    Article  PubMed  Google Scholar 

  2. Lodish, H., Berk, A., Matsudaira, P., et al., Molecular Cell Biology, New York: Freeman, 2004, 5th ed.

    Google Scholar 

  3. Narlikar, G.J., Fan, H.Y., and Kingston, R.E., Cooperation between Complexes That Regulate Chromatin Structure and Transcription, Cell (Cambridge, Mass.), 2002, vol. 108, pp. 475–487.

    Article  PubMed  Google Scholar 

  4. Morales, V., Giamarchi, C., Chailleux, C., et al., Chromatin Structure and Dynamics: Functional Implications, Biochimie, 2001, vol. 83, pp. 1029–1039.

    Article  PubMed  Google Scholar 

  5. Tyler, J.K., Chromatin Assembly: Cooperation between Histone Chaperones and ATP-Dependent Nucleosome Remodeling Machines, Eur. J. Biochem., 2002, vol. 269, pp. 2268–2274.

    Article  PubMed  Google Scholar 

  6. Grunstein, M., Histones As Regulators of Genes, Sci. Am., 1992, vol. 267, pp. 68–74.

    Google Scholar 

  7. Naar, A.M., Lemon, B.D., and Tjian, R., Transcriptional Coactivator Complexes, Annu. Rev. Biochem., 2001, vol. 70, pp. 475–501.

    Article  PubMed  Google Scholar 

  8. Carey, M. and Smale, S.T., Transcriptional Regulation in Eucariotes, New York: CSHL, 2000.

    Google Scholar 

  9. Cosma, M.P., Ordered Recruitment: Gene-Specific Mechanism of Transcription Activation, Mol. Cell, 2002, vol. 10, pp. 227–236.

    Article  PubMed  Google Scholar 

  10. Mason, P.B. and Struhl, K., The FACT Complex Travels with Elongating RNA Polymerase II and Is Important for the Fidelity of Transcriptional Initiation in Vivo, Mol. Cell. Biol., 2003, vol. 23, pp. 8323–8333.

    Article  PubMed  Google Scholar 

  11. Studitsky, V.M., Walter, W., Kireeva, M., et al., Chromatin Remodeling by RNA Polymerases, Trends Biochem. Sci., 2004, vol. 29, pp. 127–135.

    Article  PubMed  Google Scholar 

  12. Alvarez, M., Rhodes, S.J., and Bidwell, J.P., Context-Dependent Transcription: All Politics Is Local, Gene, 2003, vol. 313, pp. 43–57.

    Article  PubMed  Google Scholar 

  13. Zhimulev, I.F. and Belyaeva, E.S., Heterochromatin, Position Effect, and Genetic Silencing, Rus. J. Genet., 2003, vol. 39, no.2, pp. 133–146.

    Article  Google Scholar 

  14. Redi, C.A., Garagna, S., Zacharias, H., et al., The Other Chromatin, Chromosoma, 2001, vol. 110, pp. 136–147.

    PubMed  Google Scholar 

  15. Richards, E.J. and Elgin, S.C., Epigenetic Codes for Heterochromatin Formation and Silencing: Rounding Up the Usual Suspects, Cell (Cambridge, Mass.), 2002, vol. 108, pp. 489–500.

    Article  PubMed  Google Scholar 

  16. Eissenberg, J.C. and Elgin, S.C., The HP1 Protein Family: Getting a Grip on Chromatin, Curr. Opin. Genet. Dev., 2000, vol. 10, pp. 204–210.

    Article  PubMed  Google Scholar 

  17. Sun, F.L., Cuaycong, M.H., Craig, C.A., et al., The Fourth Chromosome of Drosophila melanogaster: Interspersed Euchromatic and Heterochromatic Domains, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 5340–5345.

    Article  PubMed  Google Scholar 

  18. Horn, P.J. and Peterson, C.L., Molecular Biology: Chromatin Higher Order Folding-Wrapping Up Transcription, Science, 2002, vol. 297, pp. 1824–1827.

    Article  PubMed  Google Scholar 

  19. Becker, P.B. and Horz, W., ATP-Dependent Nucleosome Remodeling, Annu. Rev. Biochem., 2002, vol. 71, pp. 247–273.

    Article  PubMed  Google Scholar 

  20. Lusser, A. and Kadonaga, J.T., Chromatin Remodeling by ATP-Dependent Molecular Machines, BioEssays, 2003, vol. 25, pp. 1192–1200.

    Article  PubMed  Google Scholar 

  21. Holstege, F.C., Jennings, E.G., Wyrick, J.J., et al., Dissecting the Regulatory Circuitry of a Eukaryotic Genome, Cell (Cambridge, Mass.), 1998, vol. 95, pp. 717–728.

    Article  PubMed  Google Scholar 

  22. Tsukiyama, T., The In Vivo Functions of ATP-Dependent Chromatin-Remodeling Factors, Nat. Rev. Mol. Cell Biol., 2002, vol. 3, pp. 422–429.

    Article  PubMed  Google Scholar 

  23. Vignali, M., Hassan, A.H., Neely, K.E., et al., ATP-Dependent Chromatin-Remodeling Complexes, Mol. Cell. Biol., 2000, vol. 20, pp. 1899–1910.

    Article  PubMed  Google Scholar 

  24. Dimova, D., Nackerdien, Z., Furgeson, S., et al., A Role for Transcriptional Repressors in Targeting the Yeast Swi/Snf Complex, Mol. Cell, 1999, vol. 4, pp. 75–83.

    PubMed  Google Scholar 

  25. Corona, D.F. and Tamkun, J.W., Multiple Roles for ISWI in Transcription, Chromosome Organization and DNA Replication, Biochim. Biophys. Acta, 2004, vol. 1677, pp. 113–119.

    PubMed  Google Scholar 

  26. Shimono, Y., Murakami, H., Kawai, K., et al., Mi-2 β Associates with BRG1 and RET Finger Protein at the Distinct Regions with Transcriptional Activating and Repressing Abilities, J. Biol. Chem., 2003, vol. 278, pp. 51 638–51 645.

    Google Scholar 

  27. Kouzarides, T., Chromatin-Modifying Enzymes in Transcription and Cancer, Biochem. Soc. Trans., 2003, vol. 31, pp. 741–743.

    PubMed  Google Scholar 

  28. Jenuwein, T. and Allis, C.D., Translating the Histone Code, Science, 2001, vol. 293, pp. 1074–1080.

    PubMed  Google Scholar 

  29. Eberharter, A. and Becker, P.B., Histone Acetylation: A Switch between Repressive and Permissive Chromatin. Second in Review Series on Chromatin Dynamics, EMBO Rep., 2002, vol. 3, pp. 224–229.

    Article  PubMed  Google Scholar 

  30. Yamagoe, S., Kanno, T., Kanno, Y., et al., Interaction of Histone Acetylases and Deacetylases in Vivo, Mol. Cell. Biol., 2003, vol. 23, pp. 1025–1033.

    Article  PubMed  Google Scholar 

  31. Berger, S.L., Histone Modifications in Transcriptional Regulation, Curr. Opin. Genet. Dev., 2002, vol. 12, pp. 142–148.

    Article  PubMed  Google Scholar 

  32. Featherstone, M., Coactivators in Transcription Initiation: Here Are Your Orders, Curr. Opin. Genet. Dev., 2002, vol. 12, pp. 149–155.

    Article  PubMed  Google Scholar 

  33. Maile, T., Kwoczynski, S., Katzenberger, R.J., et al., TAF1 Activates Transcription by Phosphorylation of Serine 33 in Histone H2B, Science, 2004, vol. 304, pp. 1010–1014.

    Article  PubMed  Google Scholar 

  34. Zhang, Y., Transcriptional Regulation by Histone Ubiquitination and Deubiquitination, Genes Dev., 2003, vol. 17, pp. 2733–2740.

    Article  PubMed  Google Scholar 

  35. Henry, K.W., Wyce, A., Lo, W.S., et al., Transcriptional Activation Via Sequential Histone H2B Ubiquitylation and Deubiquitylation, Mediated by SAGA-Associated Ubp8, Genes Dev., 2003, vol. 17, pp. 2648–2663.

    Article  PubMed  Google Scholar 

  36. Rouleau, M. and Aubin, R.A., Poirier G.G. Poly(ADP-Ribosyl) ated Chromatin Domains: Access Granted, J. Cell Sci., 2004, vol. 117, pp. 815–825.

    Article  PubMed  Google Scholar 

  37. Sterner, D.E. and Berger, S.L., Acetylation of Histones and Transcription-Related Factors, Microbiol. Mol. Biol. Rev., 2000, vol. 64, pp. 435–459.

    Article  PubMed  Google Scholar 

  38. Champagne, N., Bertos, N.R., Pelletier, N., et al., Identification of a Human Histone Acetyltransferase Related to Monocytic Leukemia Zinc Finger Protein, J. Biol. Chem., 1999, vol. 274, pp. 28 528–28 536.

    Article  Google Scholar 

  39. Martinez, E., Palhan, V.B., Tjernberg, A., et al., Human STAGA Complex Is a Chromatin-Acetylating Transcription Coactivator That Interacts with Pre-mRNA Splicing and DNA Damage-Binding Factors in Vivo, Mol. Cell. Biol., 2001, vol. 21, pp. 6782–6795.

    Article  PubMed  Google Scholar 

  40. Bhaumik, S.R. and Green, M.R., Differential Requirement of SAGA Components for Recruitment of TATA-Box-Binding Protein to Promoters in Vivo, Mol. Cell. Biol., 2002, vol. 22, pp. 7365–7371.

    Article  PubMed  Google Scholar 

  41. Barlev, N.A., Emelyanov, A.V., Castagnino, P., et al., A Novel Human Ada2 Homologue Functions with Gcn5 or Brg1 to Coactivate Transcription, Mol. Cell. Biol., 2003, vol. 23, pp. 6944–6957.

    Article  PubMed  Google Scholar 

  42. Kusch, T., Guelman, S., Abmayr, S.M., et al., Two Drosophila Ada2 Homologues Function in Different Multiprotein Complexes, Mol. Cell. Biol., 2003, vol. 23, pp. 3305–3319.

    Article  PubMed  Google Scholar 

  43. Huisinga, K.L. and Pugh, B.F., A Genome-Wide Housekeeping Role for TFIID and a Highly Regulated Stress-Related Role for SAGA in Saccharomyces cerevisiae, Mol. Cell, 2004, vol. 13, pp. 573–585.

    Article  PubMed  Google Scholar 

  44. Kurdistani, S.K. and Grunstein, M., Histone Acetylation and Deacetylation in Yeast, Nat. Rev. Mol. Cell Biol., 2003, vol. 4, pp. 276–284.

    Article  PubMed  Google Scholar 

  45. Thiagalingam, S., Cheng, K.H., Lee, H.J., et al., Histone Deacetylases: Unique Players in Shaping the Epigenetic Histone Code, Ann. New York Acad. Sci., 2003, vol. 983, pp. 84–100.

    Google Scholar 

  46. DiRenzo, J., Shang, Y., Phelan, M., et al., BRG-1 Is Recruited to Estrogen-Responsive Promoters and Cooperates with Factors Involved in Histone Acetylation, Mol. Cell. Biol., 2000, vol. 20, pp. 7541–7549.

    Article  PubMed  Google Scholar 

  47. Fazzio, T.G., Kooperberg, C., Goldmark, J.P., et al., Widespread Collaboration of Isw2 and Sin3-Rpd3 Chromatin Remodeling Complexes in Transcriptional Repression, Mol. Cell. Biol., 2001, vol. 21, pp. 6450–6460.

    Article  PubMed  Google Scholar 

  48. Syntichaki, P., Topalidou, I., and Thireos, G., The Gcn5 Bromodomain Co-Ordinates Nucleosome Remodeling, Nature, 2000, vol. 404, pp. 414–417.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Genetika, Vol. 41, No. 7, 2005, pp. 884–893.

Original Russian Text Copyright © 2005 by Shidlovskii, Nabirochkina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shidlovskii, Y.V., Nabirochkina, E.N. The Effect of Chromatin Remodeling and Modification on RNA-Polymerase-Mediated Transcription Initiation. Russ J Genet 41, 720–727 (2005). https://doi.org/10.1007/s11177-005-0151-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11177-005-0151-4

Keywords

Navigation