Skip to main content
Log in

Selection on Viability of Individuals Heterozygous for the Temperature-Sensitive Lethal Mutation l(2)M167 DTS in Experimental Populations of Drosophila melanogaster

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In experiments on introduction of mutation l(2)M167 DTS in Drosophila melanogaster populations, larval and pupal viability and developmental rate are limiting factors determining the intensity of selection on the l(2)M167 DTS mutation. Notwithstanding the rapid elimination of the mutation from the population, positive selection for viability was shown, which increased fitness of the mutation carriers in generations. The fitness component viability was estimated in individuals l(2)M167 DTS/+; relative to that of wild-type individuals, it varied from 0.5 to 1.0. Factors affecting this trait in overcrowded populations were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: Clarendon, 1930.

    Google Scholar 

  2. Kingman, J.F.C., Mathematical Problems in Population Genetics, Proc. Camb. Phil. Soc., 1961, vol. 57, no.3, pp. 574–582.

    Google Scholar 

  3. Li, C.C., Fundamental Theorem of Natural Selection, Nature, 1967, vol. 214, no.5087, pp. 505–506.

    Google Scholar 

  4. Jungen, H. and Hartl, D.L., Average Fitness of Population of Drosophila melanogaster, As Estimated Using Compound Autosome Strains, Evolution, 1979, vol. 33, pp. 359–370.

    Google Scholar 

  5. Haymer, D.R. and Hartl, D.L., The Experimental Assessment of Fitness in Drosophila: I. Comparative Measures of Comparative Reproductive Success, Genetics, 1982, vol. 102, pp. 455–466.

    Google Scholar 

  6. Glotov, N.V., Tishkin, V.V., Kuznetsova, V.V., and Rakhman, M.I., General Fitness and Its Components in Drosophila melanogaster, in Ontogenez, evolyutsiya, biosfera (Ontogeny, Evolution, Biosphere), Moscow: Nauka, 1989, pp. 130–144.

    Google Scholar 

  7. Lazebnyi, O.E., Imasheva, A.G., and Zhivotovsky, L.A., Fitness of Experimental Drosophila melanogaster Populations in Directional or Stabilizing Selection, Genetika (Moscow), 1991, vol. 27, no.10, pp. 1726–1732.

    Google Scholar 

  8. Mukai, T. and Burdick, A.B., Single Gene Heterosis Associated with Second Chromosome Recessive Lethal in Drosophila melanogaster, Genetics, 1959, vol. 44, pp. 211–232.

    Google Scholar 

  9. Benedik, J., Evaluation of Components of Fitness for Recessive Lethal Heterozygotes: II. Utilization of the Model, Scr. Fac. Sci. Univ. Purk. Brun, 1981, vol. 11, nos.3–4, pp. 150–181.

    Google Scholar 

  10. Spiess, E.B. and Spiess, L.D., Selection for Rate of Development and Gene Arrangement Frequencies in Drosophila persimilis: II. Fitness Properties at Equilibrium, Genetics, 1966, vol. 53, no.4, pp. 695–708.

    Google Scholar 

  11. Barclay, H.J. and Fitz-Farle, M., Maximum Likelihood Estimates of Fitness in Iteroparous Species Population Replacement Experiments Using Compound Chromosomes, Genome, 1988, vol. 30, no.1, pp. 83–88.

    Google Scholar 

  12. Mettler, L.E. and Gregg, T.G., Population Genetics and Evolution, Englewood Cliffs, New Jersey: Prentige-Hall, 1969.

    Google Scholar 

  13. Gailey, D.A., Hall, J.S., and Siegel, R.W., Reduced Reproductive Success for a Conditioning Mutant in Experimental Populations of Drosophila melanogaster, Genetics, 1985, vol. 111, no.4, pp. 795–807.

    Google Scholar 

  14. Sondergaard, L., Mating Competition in Artificial Populations of Drosophila melanogaster Polymorphic for ebony: II. A Test for Minority Male Mating Advantage, Genet. Res., 1986, vol. 47, no.3, pp. 205–208.

    Google Scholar 

  15. Kyriacou, C.P., Long-Term ebony Polymorphism: A Comparison of the Contributions of Behavioral and Nonbehavioral Fitness Characters, Behav. Genet., 1985, vol. 15, no.2, pp. 165–180.

    Google Scholar 

  16. Rasmuson, M., Variation in Persistence of Gene Frequency Changes in Laboratory Populations of Drosophila melanogaster, Hereditas (Lund, Swed.), 1970, vol. 65, no.1, pp. 57–63.

    Google Scholar 

  17. Barnes, P.T., Holland, B., and Courreges, V., Genotype-by-Environment and Epistatic Interactions in Drosophila melanogaster: The Effects of Gpdh Allozymes, Genetic Background and Rearing Temperature on Larval Developmental Time and Viability, Genetics, 1989, vol. 122, pp. 859–868.

    Google Scholar 

  18. Hemmat, M. and Eggleston, P., The Biometrical Genetics of Competitive Parameters in Drosophila melanosgaster, Heredity, 1990, vol. 64, no.2, pp. 215–231.

    Google Scholar 

  19. Kulikov, A.M., Marets, F., and Mitrofanov, V.G., Effect of Population Density on the Dynamics of the Exclusion of the l(2)M167 DTS Recessive Lethal Mutation from Experimental Populations, Rus. J. Genet., 2005, vol. 41, no.3, pp. 249–255.

    Google Scholar 

  20. Kulikov, A.M., Marets, F., and Mitrofanov, V.G., Effects of Male Competitiveness, Developmental Rate, and Larval and Pupal Viability of Drosophila melanogaster Heterozygotes for the Temperature-Sensitive Lethal Mutation l(2)M167 DTS on the Dynamics of the Exclusion of the Mutation from a Population, Rus. J. Genet., 2005, vol. 41, no.5, pp. 620–625.

    Google Scholar 

  21. Kulikov, A.M. and Myasnyankina, E.N., Effect of the l(2)M167 DTS Temperature-Sensitive Mutation on the Viability of Heterozygous Embryos, Larvae, and Pupae of Drosophila melanogaster, Rus. J. Genet., 1994, vol. 30, no.7, pp. 798–804.

    Google Scholar 

  22. Kulikov, A.M., Mitrofanov, V.G., Myasnyankina, E.N., and Generalova, M.V., Efficiency of Introduction of a Sominant Temperature-Sensitive Mutation in a Drosophila melanogaster Population under Near-Natural Conditions, Zh. Obshch. Biol., 1988, vol. 49, no.6, pp. 765–776.

    Google Scholar 

  23. Timofeeff-Ressovsky, N.W., Uber die Vitalitat einiger Genmutationen und ihrer Kombinationen bei Drosophila funebris und ihre Abhangigkeit vom genotypischen und vom ausseren Milieu, Z. Induct. Abstammungs-Vererbungslehre, 1934, vol. 66, p. 319.

    Google Scholar 

  24. Benedik, J. and Franek, J., Evaluation of Components of Fitness for Recessive Lethal Heterozygotes: I. Arrangement of the Model, Scr. Fac. Sci. Univ. Purk. Brun., 1981, vol. 11, nos.3–4, pp. 135–150.

    Google Scholar 

  25. Molina, F., Conzalez-Candelas, F., and Mensua, J.L., Density-and Frequency-Dependent Selection in Drosophila melanogaster, Dros. Inf. Serv., 1987, vol. 66, pp. 102–103.

    Google Scholar 

  26. Molina, F., Conzalez-Candelas, F., and Mensua, J.L., Effect of the Spatial Disposition of Food in Larval Competition of Drosophila melanogaster, Dros. Inf. Serv., 1987, vol. 66, p. 104.

    Google Scholar 

  27. De Miranda, F.R. and Eggleston, P., Analysis of Dominance for Competitive Ability in Drosophila melanogaster, Heredity, 1989, vol. 63, no.2, pp. 221–229.

    Google Scholar 

  28. Moya, A., Gonzalez-Candelas, F., and Mensua, J.L., Larval Competition in Drosophila melanogaster: Frequency Dependence of Viability, Theor. Appl. Genet., 1988, vol. 75, no.2, pp. 366–377.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Genetika, Vol. 41, No. 6, 2005, pp. 759–766.

Original Russian Text Copyright © 2005 by Kulikov, Marec, Mitrofanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulikov, A.M., Marec, F. & Mitrofanov, V.G. Selection on Viability of Individuals Heterozygous for the Temperature-Sensitive Lethal Mutation l(2)M167 DTS in Experimental Populations of Drosophila melanogaster . Russ J Genet 41, 613–619 (2005). https://doi.org/10.1007/s11177-005-0135-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11177-005-0135-4

Keywords

Navigation