Nadeau, J.H. and Taylor, B.A., Length of Chromosomal Segments Conserved Since Divergence of Man and Mouse, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 814–818.
Google Scholar
Zakharov, I.A., Nikiforov, V.S., and Stepanyuk, E.V., Measuring Similarity in the Order of Homologous Genes, Genetika (Moscow), 1991, vol. 27, no.2, pp. 367–369.
Google Scholar
Zakharov, I.A., Nikiforov, V.S., and Stepanyuk, E.V., Homology and Evolution of Gene Orders: Simulation and Reconstruction of the Evolutionary Process, Rus. J.Genet., 1997, vol. 33, no.1, pp. 24–30.
Google Scholar
Sankoff, D. and Nadeau, J.H., Conserved Synteny As a Measure of Genomic Distance, Discrete Appl. Math., 1996, vol. 71, pp. 247–257.
Google Scholar
Segarra, C. and Aguade, M., Molecular Organization of the X Chromosome in Different Species of the obscura Group of Drosophila, Genetics, 1992, vol. 130, pp. 513–521.
Google Scholar
Segarra, C., Lozovskaya, E.R., Ribo, G., et al., P1 Clones from Drosophila melanogaster As Markers to Study the Chromosomal Evolution of Muller’s A Element in Two Species of obscura Group of Drosophila, Chromosoma, 1995, vol. 104, pp. 129–136.
Google Scholar
Gonzales, J., Ranz, J.M., and Ruiz, A., Chromosome Elements Evolve at Different Rates in the Drosophila Genome, Genetics, 2002, vol. 161, pp. 1137–1154.
Google Scholar
Keyl, H.-G., Chromosomenevolution bei Chironomus: II. Chromosomenumbauten und phylogenetische Beziehungen der Arten, Chromosoma, 1962, vol. 13, pp. 464–514.
Google Scholar
Martin, J., Wuelker, W., and Sublette, J.E., Evolutionary Cytology in the Genus Chironomus Meig, Stud. Nat. Sci., 1974, vol. 1, pp. 1–12.
Google Scholar
Martin, J., Chromosomes As Tools in Taxonomy and Phylogeny of Chironomidae (Diptera), Entomol. Scand., 1979, vol. 10,suppl., pp. 67–74.
Google Scholar
Wuelker, W., Basic Patterns in the Chromosome Evolution of the Genus Chironomus (Diptera), Z. Zool. Syst. Evol., 1980, vol. 18, pp. 112–123.
Google Scholar
Kiknadze, I.I., Shilova, A.I., Kerkis, I.E., et al., Kariotip i morfologiya lichinok triby Chironomini. Atlas (Karyotype and Morphology of Larvae of the Tribe Chironomini: An Atlas), Novosibirsk, 1991.
Kiknadze, I.I., Istomina, A.G., Gunderina, L.I., et al., Kariofondy khironomid kriolitozony Yakutii. Triba Chironomini (Karyopools of Chironomidae of the Yakutian Cryolithozone: Tribe Chironomini), Novosibirsk, 1996.
Wuelker, W., Dévai, G., and Dévai, I., Computer-Assisted Studies of Chromosome Evolution in the Genus Chironomus (Dipt.): Comparative and Integrated Analysis of Chromosome Arms A, E, and F, Acta Biol. Debr. Oecol. Hung., 1989, vol. 2, pp. 373–387.
Google Scholar
Shobanov, N.A. and Zotov, S.A., Cytogenetic Aspects of Phylogeny of the Genus Chironomus Meigen (Diptera, Chironomidae), Entomol. Obozr., 2001, vol. 80, no.1, pp. 180–192.
Google Scholar
Shobanov, N.A., Evolution of the Genus Chironomus (Dirtera, Chironomidae): 2. A Phylogenetic Model, Zool. Zh., 2002, vol. 81, no.6, pp. 711–718.
Google Scholar
Scholl, A., Geiger, H.J., and Ryser, H.M., Die Evolution der Gattung Chironomus aus Biochemisch-Genetischer Sicht, in Chironomidae: Ecology, Systematics, Cytology and Physiology, Oxford: Pergamon, 1980, pp. 25–33.
Google Scholar
Filippova, M.A., Gunderina, L.I., and Kiknadze, I.I., A Population-Genetic Study of the Species of the Chironomus Genus (Diptera: Chironomidae), Acta. Biol. Debr. Oecol. Hung., 1989, vol. 2, pp. 195–206.
Google Scholar
Guriev, V., Makarevitch, I., Blinov, A., and Martin, J., Phylogeny of the Genus Chironomus (Diptera) Inferred from Sequences Mitochondrial Cytochrome b and Cytochrome Oxidase 1, Mol. Phylogenet. Evol., 2001, vol. 19, no.1, pp. 9–21.
Google Scholar
Devai, G., Miskolczi, M., and Wuelker, W., Standardization of Chromosome Arms B, C, and D in Chironomus (Diptera, Chironomidae), Acta Biol. Debr. Oecol. Hung., 1989, vol. 2, pp. 79–92.
Google Scholar
Kiknadze, I.I., Golygina, V.V., Istomina, A.G., and Gunderina, L.I., Pattern of Chromosome Polymorphism during Population and Species Divergence in Chironomis (Diptera, Chironomidae), Sib. Ekol. Zh., 2004, vol. 11, no.5, pp. 635–651.
Google Scholar
Gunderina, L.I., Kiknadze, I.I., and Golygina, V.V., Intraspecific Differentiation of the Cytogenetic Structure in Natural Populations of Chironomus plumosus L., the Central Species in the Group of Sibling Species, Rus. J.Genet., 1999, vol. 35, no.2, pp. 142–150.
Google Scholar
Golygina, V.V. and Kiknadze, I.I., The Karyofund of Chironomus plumosus (Diptera, Chironomidae) in Pale-arctic, Tsitologiya, 2001, vol. 43, pp. 507–519.
Google Scholar
Gusev, V.D., Nemytikova, L.A., and Chuzhanova, N.A., Rapid Method for Identification of Interconnections between Functionally and/or Evolutionarily Related Biological Texts, Mol. Biol. (Moscow), 2001, vol. 35, no.6, pp. 1015–1022.
Google Scholar
Kiknadze, I.I., Gunderina, L.I., Istomina, A.G., et al., Similarity Analysis of Inversion Banding Sequences of Chironomus Species (Breakpoint Phylogeny), in Bioinformatics of Genome Regulation and Structure, Boston, 2003, pp. 245–253.
Saitou, N. and Nei, M., The Neighbour-Joining Method: A New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.
Google Scholar
Kumar, S., Tamura, K., Jakobsen, I.B., and Nei, M., MEGA2: Molecular Evolutionary Genetic Analysis Software, Tempe, Arizona: Arizona State Univ., 2001.
Google Scholar
Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1980.
Google Scholar
Kiknadze, I.I., Blinov, A.G., and Kolesnikov, N.N., Molecular Cytological Organization of the Genome in Chironomidae, in Strukturno-funktsional’naya organizatsiya genoma (Structural and Functional Organization of the Genome), Novosibirsk: Nauka, 1989, pp. 4–58.
Google Scholar
Eggleston, W.B., Rim, N.R., and Lim, J.K., Molecular Characterization of the hobo-Mediated Inversions in Drosophila melanogaster, Genetica, 1996, vol. 144, pp. 647–656.
Google Scholar
Andolfatto, P., Wall, J.D., and Kreitman, M., Unusual Haplotype Structure at the Proximal Breakpoint of the In(2L)t in a Natural Population of Drosophila melanogaster, Genetics, 1999, vol. 153, pp. 1297–1311.
Google Scholar
Cáceres, M., Ranz, J.M., Barbadilla, A., et al., Generation of a Widespread Drosophila Inversion by a Transposable Element, Science, 1999, vol. 285, pp. 415–418.
Article
CAS
PubMed
Google Scholar
Evgen’ev, M.B., Zelentsova, H., Poluectova, H., et al., Mobile Elements and Chromosomal Evolution in virilis Group of Drosophila, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 11 337–11 342.
Google Scholar
Casals, F., Caceres, M., and Ruiz, A., The Foldback-Like Transposon Galileo Is Involved in the Generation of Two Different Natural Chromosomal Inversions of Drosophila buzzatii, Mol. Biol. Evol., 2003, vol. 20, pp. 675–685.
Google Scholar
Lyttle, T.W. and Haymer, D.S., The Role of Transposable Element hobo in the Origin of Endemic Inversions in Wild Populations of Drosophila melanogaster, Genetics, 1992, vol. 86, pp. 113–126.
Google Scholar
Wesley, C.S. and Eanes, W.F., Isolation and the Analysis of the Breakpoint Sequences of Chromosome Inversion In(3L)Payne in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 3132–3136.
Google Scholar
Cirera, S., Martin-Campos, J., Segarra, C., and Aguade, M., Molecular Characterization of the Breakpoints of an Inversion Fixed between Drosophila melanogaster and D. subobscura, Genetics, 1995, vol. 139, pp. 321–326.
Google Scholar
Rozas, J., Segarra, C., Riby, C., and Aguade, M., Molecular Population Genetics of the rp49 Gene Region in Different Chromosomal Inversions of Drosophila sub-obscura, Genetics, 1999, vol. 151, pp. 189–202.
Google Scholar