Skip to main content
Log in

Association between defects of karyogamy and translation termination in yeast Saccharomyces cerevisiae

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Mutants capable of a high frequency of cytoduction (Hfc+) were obtained in a haploid strain of Saccharomyces cerevisiae, suggesting impaired cytogamy. Nine of the 68 Hfc+ mutants showed the antisuppressor effect with respect to mutations of the SUP35 and SUP45 genes, which code for translation termination factors, or to the [PSI +] factor, which is the prion form of Sup35. Cosegregation of the characters “higher frequency of cytoduction” and “antisuppression” was demonstrated for three Hfc+ mutants. One (HFC12-2) of the Hfc+ mutations exerted a dominant antisuppressor effect with respect to [PSI +] and had no effect on [PSI +] maintenance. On the strength of the results, an interaction was assumed for translation termination components and cytoskeleton proteins, which play a role in karyogamy in yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Zhouravleva, G., Frolova, L., Le Goff, X., et al., Termination of Translation in Eukaryotes Is Governed by Two Interacting Polypeptide Chain Release Factors, eRF1 and eRF3, EMBO J., 1995, vol. 14, pp. 4065–4072.

    Google Scholar 

  2. Frolova, L., Le Goff, X., Rasmussen, H.H., et al., A Highly Conserved Eukaryotic Protein Family Possessing Properties of Polypeptide Chain Release Factor, Nature, 1994, vol. 372, pp. 701–703.

    Google Scholar 

  3. Inge-Vechtomov, S.G., Zhouravleva, G.A., and Philippe, M., Eukaryotic Release Factors (eRFs) History, Biol. Cell., 2003, vol. 95, pp. 195–209.

    Google Scholar 

  4. Borchsenius, A.S. and Inge-Vechtomov, S.G., On the Role of the SUR35 and SUR45 Genes in the Cell Cycle Control in Saccharomycete Yeasts, Dokl. Akad. Nauk, 1997, vol. 353, pp. 553–556.

    Google Scholar 

  5. Tikhomirova, V.L. and Inge-Vechtomov, S.G., Sensitivity of sup35 and sup45 Mutants in Saccharomyces cerevisiae to Antimicrotubule Drug Benomyl, Curr. Genet., 1996, vol. 30, pp. 44–49.

    Google Scholar 

  6. Borchsenius, A.S., Tchourikova, A.A., and Inge-Vechtomov, S.G., Recessive Mutations in SUP35 and SUP45 Genes Coding for Translation Release Factors Affect Chromosome Stability in Saccharomyces cerevisiae, Curr. Genet., 2000, vol. 37, pp. 285–291.

    Google Scholar 

  7. Basu, J., Williams, B.C., Li, Z., et al., Depletion of a Drosophila Homolog of Yeast Sup35p Disrupts Spindle Assembly, Chromosome Segregation, and Cytokinesis during Male Meiosis, Cell Motil. Cytoskeleton, 1998, vol. 39, pp. 286–302.

    Google Scholar 

  8. Valouev, I.A., Kushnirov, V.V., and Ter-Avanesyan, M.D., Yeast Polypeptide Chain Release Factors eRF1 and eRF3 Are Involved in Cytoskeleton Organization and Cell Cycle Regulation, Cell Motil. Cytoskeleton, 2002, vol. 52, pp. 161–173.

    Google Scholar 

  9. Newnam, G.P., Steenberger, J.N., and Chernoff, Y.O., Genetic Study of Interactions between the Cytoskeletal Assembly Protein Sla1 and Prion-Forming Domain of the Release Factor Sup35 (eRF3) in Saccharomyces cerevisiae, Genetics, 1999, vol. 153, pp. 81–94.

    Google Scholar 

  10. Zhouravleva, G.A., Alenin, V.V., Inge-Vechtomov, S.G., and Chernoff, Y.O., To Stick or Not to Stick: Prion Domains from Yeast to Mammals, Recent Res. Dev. Mol. Cell. Biol., 2002, vol. 3, pp. 185–218.

    Google Scholar 

  11. Bailleul-Winslett, P.A., Newnam, G.P., Wegrzyn, R.D., and Chernoff, Y.O., An Antiprion Effect of the Anticytoskeletal Drug Latrunculin A in Yeast, Gene Expression, 2000, vol. 9, pp. 145–156.

    Google Scholar 

  12. Marsh, L. and Rose, M.D., The Pathway of Cell and Nuclear Fusion during Mating in S. cerevisiae, The Molecular and Cellular Biology of the Yeast Saccharomyces, Prangle, G.R., et al., Eds., New York: CSHL, 1997, pp. 827–888.

    Google Scholar 

  13. Bannikova, M.A., A Genetic Study of Cytoduction in Yeast Saccharomyces cerevisiae, Cand. Sci. (Biol.) Dissertation, Leningrad: Leningrad State Univ., 1986.

    Google Scholar 

  14. Andrianova, V.M., Samsonova, M.G., Sorova, Y.V., and Inge-Vechtomov, S.G., Catalogue of Peterhof Genetic Collection of Yeast Saccharomyces cerevisiae, St. Petersburg: NIIKh St. Petersburg State Univ., 2003.

    Google Scholar 

  15. Zakharov, I.A., Kozhina, T.N., Kozhin, S.A., and Fedorova, I.V., Sbornik metodik po genetike drozhzheisakharomitsetov (Methods of the Genetics of Saccharomycetes), Leningrad: Nauka, 1984.

    Google Scholar 

  16. Guthrie, C. and Fink, G.R., Guide to Yeast Genetics and Molecular Biology, Methods of Enzymology, vol. 194, Abelson, G.N. and Simon, N.I., Eds., New York: Academic, 1990.

    Google Scholar 

  17. Tuite, M.F., Mundy, C.R., and Cox, B.R., Agents That Cause a High Frequency of Genetic Change from [psi +] to [psi -] in Saccharomyces cerevisiae, Genetics, 1981, vol. 98, pp. 691–711.

    Google Scholar 

  18. Inge-Vechtomov, S.G. and Repnevskaya, M.V., Phenotypic Expression of Primary Lesions of Genetic Material in Saccharomyces Yeast, Genome, 1989, vol. 31, pp. 497–502.

    Google Scholar 

  19. Inge-Vechtomov, S.G., Tikhodeev, O.N., and Karpova, T.S., Selective Systems for Isolating Recessive Ribosome Suppressors in Saccharomycete Yeasts, Genetika (Moscow), 1988, vol. 24, no.7, pp. 1159–1165.

    Google Scholar 

  20. Inge-Vechtomov, S.G. and Karpova, T.S., A Selective System of Cytoduction with the Use of Recessive Suppressors in Saccharomycete Yeasts, Genetika (Moscow), 1984, vol. 20, no.3, pp. 398–407.

    Google Scholar 

  21. Schmidt, M.E., Brown, T.A., and Trumpower, B.L., A Rapid and Simple Method for Preparation of RNA from Saccharomyces cerevisiae, Nucleic Acids Res., 1990, vol. 18, pp. 3091–3092.

    Google Scholar 

  22. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  23. Polaina, J. and Conde, J., Genes Involved in a Control of Nuclear Fusion during the Sexual Cycle of Saccharomyces cerevisiae, Mol. Gen. Genet., 1982, vol. 186, pp. 253–258.

    Google Scholar 

  24. Osipov, K.V., Volkov, K.V., Soom, M. Ya., and Mironova, L.N., Translation Fidelity in Yeast: The N Domain of Sup35p (eRF3) and Reading of Stop Codons, Tezisy nauchnykh dokladov III s”ezda biokhimicheskogo obshchestva (Proc. III Meet. of the Biochemical Society), St. Petersburg: Farmatsevticheskoe Izdatel’stvo Faros-Plyus, 2002.

    Google Scholar 

  25. Kikuchi, Y., Shimatake, H., and Kikuchi, A., A Yeast Gene Required for G1-to-S Transition Encodes a Protein Containing an A-Kinase Target Site and GTPase Domain, EMBO J., 1988, vol. 7, pp. 1175–1182.

    Google Scholar 

  26. Ter-Avanesyan, M.D., Kushnirov, V.V., Dagkesamanskaya, A.R., et al., Deletion Analysis of the SUP35 Gene of the Yeast Saccharomyces cerevisiae Reveals Two Nonoverlapping Functional Regions in Encoded Protein, Mol. Microbiol., 1993, vol. 7, pp. 683–692.

    Google Scholar 

  27. Shiina, N., Gotoh, Y., Kubomura, N., et al., Microtubule Severing by Elongation Factor 1, Science, 1995, vol. 266, pp. 283–286.

    Google Scholar 

  28. Condeelis, J., Elongation Factor 1, Translation and Cytoskeleton, Trends Biochem. Sci., 1995, vol. 20, pp. 169–170.

    Google Scholar 

  29. Liu, G., Tang, J., Edmonts, B.T., et al., F-Actin Sequesters Elongation Factor 1 from Interaction with Aminoacyl tRNA in pH-Dependent Reaction, J. Cell Biol., 1996, vol. 135, pp. 953–963.

    Google Scholar 

  30. Schmidt, A., Kunz, J., and Hall, M.N., TOR2 Is Required for Organization of Actin Cytoskeleton in Yeast, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 13 780–13 785.

    Google Scholar 

  31. Barbet, N.N., Schneider, U., Helliwell, S.B., et al., TOR Controls Translation Initiation and Early G1 Progression in Yeast, Mol. Cell. Biol., 1996, vol. 7, pp. 25–42.

    Google Scholar 

  32. Frolova, L., Le-Goff, X., Zhouravleva, G., et al., Eukaryotic Polypeptide Chain Release Factor eRF3 Is an eRF1 and Ribosome-Dependent Guanosine Triphosphatase, RNA, 1996, vol. 2, pp. 334–341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Genetika, Vol. 41, No. 2, 2005, pp. 178–186.

Original Russian Text Copyright © 2005 by Borchsenius, Repnevskaya, Kurischko, Inge-Vechtomov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borchsenius, A.S., Repnevskaya, M.V., Kurischko, C. et al. Association between defects of karyogamy and translation termination in yeast Saccharomyces cerevisiae . Russ J Genet 41, 122–129 (2005). https://doi.org/10.1007/s11177-005-0035-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11177-005-0035-7

Keywords

Navigation