Russian Journal of Electrochemistry

, Volume 41, Issue 7, pp 719–724 | Cite as

A Comparative Study on Electrochemical Oxidation of Phenol in Two Types of Cells

  • Wang Hui
  • Yu Xiujuan
  • Wu Lan
  • Wang Qiang
  • Sun Dezhi


Electrochemical oxidation of phenol was studied using Ti/IrO2/RuO2 anode and a carbon/polytetrafluoroethylene (C/PTFE) O2-fed cathode which generated hydrogen peroxide (H2O2) by the reduction of oxygen in the undivided cell and the divided cell with a cotton diaphragm. For degradation mechanism of phenol on the cathode and anode, two kinds of cells are similar. However, the basic condition of the cathodic compartment in the divided cell was prone to H2O2 changed to and HO2 and HO·. So, the mineralization of phenol in the divided cell was better than that in the undivided cell.

Key words

electrochemical oxidation C/PTFE O2-fed cathode cotton diaphragm phenol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Comninellis, C. and Nerini, A., J. Appl. Electrochem., 1995, vol. 25, p. 23.CrossRefGoogle Scholar
  2. 2.
    Iniesta, J., Michaud, P.A., and Panizza, M., Electrochim. Acta, 2001, vol. 46, p. 3573.CrossRefGoogle Scholar
  3. 3.
    Tahar, N.B. and Savall, A., J. AppL. Electrochem, 1999, vol. 29, p. 277.CrossRefGoogle Scholar
  4. 4.
    Tahar, N.B. and Savall, A., J. Electrochem. Soc., 1998, vol. 145, p. 3427.Google Scholar
  5. 5.
    Leffrang, U., Ebert, K., Flory, K., et al., Sep. Sci. Technol., 1995, vol. 30, p. 1883.Google Scholar
  6. 6.
    Comninellis, C. and Pulgarin, C., J. Appl. Electrochem., 1993, vol. 23, p. 108.CrossRefGoogle Scholar
  7. 7.
    Vitt, J.E. and Johnson, D.C., J. Electrochem. Soc., 1992, vol. 139, p. 774.Google Scholar
  8. 8.
    Gallegos, A.A. and Pletcher, D., Electrochim. Acta, 1999, vol. 44, p. 2483.CrossRefGoogle Scholar
  9. 9.
    Harrington, T. and Pletcher, D., J. Electrochem. Soc., 1999, vol. 146, p. 2983.CrossRefGoogle Scholar
  10. 10.
    Brillas, E., Bastida, R.M., and Liosa, E., J. Electrochem. Soc., 1995, vol. 142, p. 1733.Google Scholar
  11. 11.
    Oturan, M.A., J. Appl. Electrochem., 2000, vol. 30, p. 475.CrossRefGoogle Scholar
  12. 12.
    Oturan, M.A., Peiroten, J., Chartrin, P., et al., Environ. Sci. Technol., 2000, vol. 34, p. 3474.CrossRefGoogle Scholar
  13. 13.
    Do, J.S. and Chen, C.P., J. Appl. Electrochem., 1994, vol. 24, p. 936.CrossRefGoogle Scholar
  14. 14.
    Oturan, M.A. and Pinson, J., J. Phys. Chem., 1995, vol. 99, p. 13948.CrossRefGoogle Scholar
  15. 15.
    Ponce, C.D. and Pletcher, D., J. Appl. Electrochem., 1995, vol. 25, p. 307.Google Scholar
  16. 16.
    Lee, K.B., Gu, M.B.., and Moon, S.H., Water Res., 2003, vol. 37, p. 983.CrossRefPubMedGoogle Scholar
  17. 17.
    Iniesta, J. and Exposito, E., J. Electrochem. Soc., 2002, vol. 149, p. D57.CrossRefGoogle Scholar
  18. 18.
    APHA, AWWA, WEF: Standard Method for the Examination of Water and Wastewater, Washington (DC), 1995.Google Scholar
  19. 19.
    Kolthoff, I.M. and Belcher, R., Interscience (Volumetric analysis: Titration Methods), 1957, vol. 3.Google Scholar
  20. 20.
    Santos, A. and Yustos, P., Appl. Catal. B, 2002, vol. 39, p. 97.CrossRefGoogle Scholar
  21. 21.
    Ricardo, A., Walter, T., Paul, P., et al., Chemosphere, 2003, vol. 50, p. 97.CrossRefPubMedGoogle Scholar
  22. 22.
    Fang, J.M., Sun, R.C., Salisbury, D., et al., Polym. Degrad. Stab., 1999, vol. 66, p. 423.CrossRefGoogle Scholar
  23. 23.
    Zhou, M.H., Wu, Z.C., and Wang, D.H., Chem. React. Eng. Technol., 2001, vol. 17, p. 263.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • Wang Hui
    • 1
  • Yu Xiujuan
    • 1
  • Wu Lan
    • 1
  • Wang Qiang
    • 1
  • Sun Dezhi
    • 1
  1. 1.Harbin Institute of TechnologyNangang District, HarbinPeople’s Republic of China

Personalised recommendations