Skip to main content
Log in

Thermodynamic and kinetic characteristics of intermediates of electrode reactions: A comparative investigation of a number of alkylaryl and alkyl halide radicals by the laser photoemission methods

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A comparative investigation of thermodynamic and kinetic properties of a number of alkylaryl intermediates (benzyl and benzhydryl radicals) and alkyl halide intermediates (chloromethyl, dichloromethyl, and trifluoromethyl radicals) is performed by methods of laser photoemission. Techniques, aimed at the determination of thermodynamic and kinetic properties of intermediates (standard potentials E 0 of redox pairs R/R-, standard adsorption free energies -ΔG 0a(R) , values of rate constants W 0 at an equilibrium potential, as well as lifetimes (times of death in the bulk) τR of radicals R and τX of products of their reduction R-) from a comparison of Tafel plots for quasi-reversible reduction of intermediates with calculated ones and standard potentials E 0—from Tafel plots for irreversible electroreduction of intermediates, are presented. The transition from irreversible to quasi-reversible reduction in aprotic solvents at EE 0 is observed only in the case of benzyl, benzhydryl, and trifluoromethyl radicals, for which this particular collection of thermodynamic and kinetic properties is obtained, and is not observed for the chloromethyl and dichloromethyl radicals. In this case redox characteristics of intermediates (E 0, W 0) are estimated from absolute values of rates of their electroreduction. Possible reasons for the differences in the probability of a reversible electron transfer are discussed for the systems studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Benderskii, V.A. and Krivenko, A.G., Usp. Khim., 1990, vol. 59, p. 3.

    Google Scholar 

  2. Kuznetsov, A.M., Charge Transfer in Physics, Chemistry and Biology, Amsterdam: Gordon & Brich, 1995.

    Google Scholar 

  3. Eberson, L., Electron Transfer Reactions in Organic Chemistry, Berlin: Springer, 1997.

    Google Scholar 

  4. Lund, H., Daasbjerg, K., Ochiallini, D., and Pedersen, O.U., Elektrokhimiya, 1995, vol. 31, p. 939.

    Google Scholar 

  5. Daasbjerg, K., Pedersen, S.U., and Lund, H., General Aspects of the Chemistry of Radicals, Alfassi, Z.B., Ed., New York: Wiley, 1999, p. 385.

    Google Scholar 

  6. Lund, H., J. Electrochem. Soc., 2002, vol. 149, p. S21.

    Google Scholar 

  7. Pokhodenko, V.D., Koshechko, V.G., Titov, V.E., and Sednev, D.V., Teor. Eksp. Khim., 1992, vol. 28, p. 97.

    Google Scholar 

  8. Nonhebel, D. and Walton, J., Free-Radical Chemistry: Structure and Mechanism, Cambridge: Cambridge Univ. Press, 1974.

    Google Scholar 

  9. Wayner, D.D.M. and Parker, V.D., Acc. Chem. Res., 1993, vol. 26, p. 287.

    Google Scholar 

  10. Houmam, A. and Wayner, D.D.M., Acta Chem. Scand., 1998, vol. 52, p. 377.

    Google Scholar 

  11. Wayner, D.D.M., McPhee, D.J., and Griller, D., J. Am. Chem. Soc., 1988, vol. 110, p. 132.

    Google Scholar 

  12. Lieder, M., Zes. Nauk. Politech. Gdansk., 2003, no. 594.

  13. Nagaoka, T., Griller, D., and Wayner, D.D.M., J. Phys. Chem., 1991, vol. 95, p. 6264.

    Google Scholar 

  14. Wayner, D.D.M., Sim, B.A., and Dannenberg, J.J., J. Org. Chem., 1991, vol. 56, p. 4853.

    Google Scholar 

  15. Smith, D.K., Strohben, W.E., and Evans, D.G., J. Electroanal. Chem., 1990, vol. 288, p. 111.

    Google Scholar 

  16. Henglein, A., Electroanalytical Chemistry, Bard, A.J., Ed., New York: Marcel Dekker, 1976, vol. 9, p. 163.

    Google Scholar 

  17. Benderskii, V.A., Elektrokhimiya, 1994, vol. 30, p. 1419.

    Google Scholar 

  18. Benderskii, V.A. and Benderskii, A.V., Laser Electrochemistry of Intermediates, New York: CRC Press, 1995.

    Google Scholar 

  19. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Elektrokhimiya, 2005, vol. 41, p. 137.

    Google Scholar 

  20. Krivenko, A.G. and Kurmaz, V.A., Abstracts of Papers, XIV Soveshchanie EKhOS (XIV Meet. EKhOS), Novocherkassk, 1998, p. 14.

  21. Krivenko, A.G., Kotkin, A.S., Kurmaz, V.A., Titov, V.E., Lopushanskaya, V.A., and Koshechko, V.G., Teor. Eksp. Khim., 2000, vol. 36, p. 354.

    Google Scholar 

  22. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mendeleev Commun., 2002, no. 1, p. 11.

  23. Benderskii, V.A., Krivenko, A.G., and Simbirtseva, G.V., Izv. Akad. Nauk SSSR, Ser. Khim., 1990, p. 1508.

  24. Benderskii, V.A., Krivenko, A.G., and Simbirtseva, G.V., Elektrokhimiya, 1987, vol. 23, p. 748.

    Google Scholar 

  25. Buchachenko, A.L. and Vasserman, A.M., Stabil‘nye radikaly (Stable Radicals), Moscow: Khimiya, 1973.

    Google Scholar 

  26. Reutov, O.A., Kurts, A.L., and Butin, K.P., Organicheskaya khimiya (Organic Chemistry), Moscow: Mosk. Gos. Univ., 1999.

    Google Scholar 

  27. Ellison, G.B., Davico, G.E., Bierbaum, V.M., and DePuy, C.H., Int. J. Mass Spectrom. Ion Processes, 1996, vol. 156, p. 109.

    Google Scholar 

  28. Orkin, V.L., Guschin, A.G., Larin, I.K., Huie, R.E., and Kurylo, M.J., J. Photochem. Photobiol. A: Chemistry, 2003, vol. 157, p. 211.

    Google Scholar 

  29. Benderskii, V.A. and Brodskii, A.M., Fotoemissiya iz metallov v rastvory elektrolitov (Photoemission from Metals into Electrolytic Solutions), Moscow: Nauka, 1977.

    Google Scholar 

  30. Brodskii, A.M., Gurevich, Yu.Ya., Pleskov, Yu.V., and Rotenberg, Z.A., Sovremennaya fotoelektrokhimiya: Fotoemissionnye yavleniya (Modern Photoelectrochemistry: Photoemission Phenomena), Moscow: Nauka, 1974.

    Google Scholar 

  31. Hapiot, Ph., Konovalov, V.V., and Savéant, J.-M., J. Am. Chem. Soc., 1995, vol. 117, p. 1428.

    Google Scholar 

  32. Gonzalez, J., Hapiot, Ph., Konovalov, V.V., and Savant, J.-M., J. Am. Chem. Soc., 1998, vol. 120, p. 10171.

    Google Scholar 

  33. Gonzalez, J., Hapiot, Ph., Konovalov, V.V., and Savéant, J.-M., J. Electroanal. Chem., 1999, vol. 463, p. 157.

    Google Scholar 

  34. Benderskii, A.V., Benderskii, V.A., and Krivenko, A.G., J. Electroanal. Chem., 1995, vol. 380, p. 7.

    Google Scholar 

  35. Benderskii, V.A. and Krivenko, A.G., Elektrokhimiya, 1985, vol. 21, p. 1507.

    Google Scholar 

  36. Benderskii, V.A., Krivenko, A.G., and Ponomarev, E.A., Elektrokhimiya, 1989, vol. 25, p. 186.

    Google Scholar 

  37. Ludwik, J., Hilgard, S., and Volke, J., Analyst, 1988, vol. 113, p. 1729.

    Google Scholar 

  38. Korotaeva, L.M., Rubinskaya, T.Ya., Klimkina, E.V., Gul’tyai, V.P., and Bubnov, Yu. N., Izv. Akad. Nauk, Ser. Khim., 2000, p. 2072.

  39. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mendeleev Commun., 1998, no. 2, p. 56.

  40. Krivenko, A.G., Tomilov, A.P., Smirnov, Yu.D., Kotkin, A.S., and Kurmaz, V.A., Zh. Obshch. Khim., 1998, vol. 68, p. 292.

    Google Scholar 

  41. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Electrochim. Acta, 2002, vol. 47, p. 3891.

    Google Scholar 

  42. Krivenko, A.G., Kotkin, A.S., Kurmaz, V.A., and Simbirtseva, G.V., Elektrokhimiya, 2003, vol. 39, p. 840.

    Google Scholar 

  43. Kurmaz, V.A., Krivenko, A.G., Tomilov, A.P., Turygin, V.V., Khudenko, A.V., Shalashova, N.N., and Kotkin, A.S., Elektrokhimiya, 2000, vol. 36, p. 344.

    Google Scholar 

  44. Benderskii, V.A., Krivenko, A.G., Kurmaz, V.A., and Simbirtseva, G.V., Elektrokhimiya, 1986, vol. 22, p. 915.

    Google Scholar 

  45. Andrieux, C.P., Gelis, L., Medebielle, M., Pinson, J., and Savéant, J.-M., J. Am. Chem. Soc., 1990, vol. 112, p. 3509.

    Google Scholar 

  46. Ponomarev, E.A., Krivenko, A.G., Sviridova, L.N., and Stenina, E.V., Elektrokhimiya, 2001, vol. 37, p. 505.

    Google Scholar 

  47. Fontanesi, C., Andreoli, R., and Benedetti, L., Electrochim. Acta, 1998, vol. 44, p. 977.

    Google Scholar 

  48. Richard, J.P., Amyes, T.L., and Toteva, M.M., Acc. Chem. Res., 2001, vol. 34, p. 981.

    Google Scholar 

  49. Sauers, R.R., Tetrahedron, 1999, vol. 55, p. 10013.

    Google Scholar 

  50. Lund, T. and Pedersen, S.U., J. Electroanal. Chem., 1993, vol. 362, p. 109.

    Google Scholar 

  51. Oliver, E.W. and Evans, D.G., J. Electroanal. Chem., 1997, vol. 432, p. 145.

    Google Scholar 

  52. Gennaro, A., Isse, A.A., and Maran, F., J. Electroanal. Chem., 2001, vol. 507, p. 124.

    Google Scholar 

  53. Grampp, G., Landgraf, S., and Muresanu, C., Electrochim. Acta, 2004, vol. 49, p. 537.

    Google Scholar 

  54. Sadflek, M. and Turecek, F., J. Phys. Chem., 1996, vol. 100, p. 224.

    Google Scholar 

  55. Buxton, G.V., Greenstock, C.L., Helman, W.Ph., and Ross, A.R., J. Phys. Chem. Ref. Data, 1988, vol. 17, p. 513.

    Google Scholar 

  56. Clever, H.L., Monatsh. Chem., 2003, vol. 134, p. 745.

    Google Scholar 

  57. Tomanovskaya, V.F. and Kolotova, B.E., Freony (The Freons), Leningrad: Khimiya, 1970.

    Google Scholar 

  58. Girina, A.P., Kokorekina, V.A., Feoktistov, L.G., and Petrosyan, V.A., Elektrokhimiya, 1992, vol. 28, p. 517.

    Google Scholar 

  59. Lieder, M., Phosph. Sulfur Silicon Relat. Elem., 2003, vol. 178, p. 179.

    Google Scholar 

  60. Bordwell, F.G. and Zhang, X.-M., Acc. Chem. Res., 1993, vol. 26, p. 510.

    Google Scholar 

  61. Butin, K.P., Ismail, M.T., and Reutov, O.A., J. Organomet. Chem., 1979, vol. 175, p. 157.

    Google Scholar 

  62. Maran, F., Seladon, D., Severin, M.G., and Vianello, E., J. Am. Chem. Soc., 1991, vol. 113, p. 9320.

    Google Scholar 

  63. Manka, M.J., Brown, R.L., and Stein, S.E., Int. J. Chem. Kinet., 1978, vol. 19, p. 943.

    Google Scholar 

  64. Fry, A.J., Porter, J.M., and Fry, P.F., J. Org. Chem., 1996, vol. 61, p. 3191.

    Google Scholar 

  65. Tur’yan, Ya.I., Okislitel’novosstanovitel’nye reaktsii i potentsialy v analiticheskoi khimii (Redox Reactions and Potentials in Analytical Chemistry), Moscow: Khimiya, 1989.

    Google Scholar 

  66. Kuznetsov, A.M. and Ulstrup, J., Electrochim. Acta, 2000, vol. 45, p. 2339.

    Google Scholar 

  67. Marcus, R.A., J. Chem. Phys., 1956, vol. 24, p. 966.

    Google Scholar 

  68. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2001.

    Google Scholar 

  69. Eletskii, V.V. and Pleskov, Yu.V., Elektrokhimiya, 1978, vol. 14, p. 1323.

    Google Scholar 

  70. Krivenko, A.G., Kurmaz, V.A., Kotkin, A.S., Krestinin, A.V., and Zvereva, G.I., Elektrokhimiya, 2003, vol. 39, p. 1207.

    Google Scholar 

  71. Benderskii, V.A. and Krivenko, A.G., Dokl. Akad. Nauk SSSR, 1986, vol. 291, p. 1395.

    Google Scholar 

  72. Stenina, E.V., Sviridova, L.N., Eremenko, L.T., Romanova, L.B., and Krivenko, A.G., Elektrokhimiya, 2003, vol. 39, p. 1139.

    Google Scholar 

  73. Konovalov, V.V., Tsvetkov, Yu.M., Bilkis, I.I., Laev, S.S., and Shteingarts, V.D., Mendeleev Commun., 1993, no. 2, p. 51.

  74. Mairanovsky, V.G., J. Electroanal. Chem., 1981, vol. 125, p. 231.

    Google Scholar 

  75. Amatore, Ch., Combellas, C., Pinson, J., Oturan, M.A., Robveille, S., Savant, J.-M., and Thibault, A., J. Am. Chem. Soc., 1985, vol. 107, p. 4846.

    Google Scholar 

  76. Fontanesi, C., Baraldi, P., and Marcaccio, M., THEOCHEM, 2001, vol. 548, p. 13.

    Google Scholar 

  77. Daasbjerg, K., J. Chem. Soc., Perkin Trans., 1994, p. 1275.

  78. German, E.D. and Tikhomirov, V.A., THEOCHEM, 1998, vol. 423, p. 251.

    Google Scholar 

  79. Bonesi, S.M. and Erra-Balsells, R., J. Chem. Soc., Perkin Trans., 2000, p. 1583.

  80. Bertran, J., Gallardo, I., Moreno, M., and Savéant, J.-M., J. Am. Chem. Soc., 1992, vol. 114, p. 9576.

    Google Scholar 

  81. Mendkovich, A.S. and Gul’tyai, V.P., Teoreticheskie osnovy khimii organicheskikh anion-radikalov (Basics of the Chemistry of Organic Radical Anions), Moscow: Nauka, 1990.

    Google Scholar 

  82. Girina, A.P., Kokorekina, V.A., Krinets, Zh.I., Petrosyan, V.A., and Feoktistov, L.G., Elektrokhimiya, 1990, vol. 26, p. 738.

    Google Scholar 

  83. Mairanovskii, V.G., Dokl. Akad. Nauk SSSR, 1987, vol. 296, p. 923.

    Google Scholar 

  84. Mairanovskii, V.G., Dokl. Akad. Nauk SSSR, 1985, vol. 284, p. 386.

    Google Scholar 

  85. Fuhlendorf, R., Occialini, D., Pedersen, S.U., and Lund, H., Acta Chem. Scand., 1989, vol. 43, p. 803.

    Google Scholar 

  86. Mikkelsen, K.V., Pedersen, S.U., Lund, H., and Swanstrm, P., J. Phys. Chem., 1991, vol. 95, p. 8892.

    Google Scholar 

  87. Gamby, J., Hapiot, Ph., and Savant, J.-M., J. Am. Chem. Soc., 2002, vol. 124, p. 8798.

    Google Scholar 

  88. Gamby, J., Hapiot, Ph., and Savant, J.-M., J. Phys. Chem. A, 2003, vol. 107, p. 7445.

    Google Scholar 

  89. Suvorov, B.A., Zh. Org. Khim., 1998, vol. 34, p. 1047.

    Google Scholar 

  90. Combellas, C., Kanoufi, F., and Thiebault, A.J., J. Phys. Chem. B, 2003, vol. 107, p. 10894.

    Google Scholar 

  91. Mairanovskii, S.G., Stradins, J.P., and Bezuglyi, V.D., Polyarografiya v organicheskoi khimii (Polarography Applications in Organic Chemistry), Leningrad: Khimiya, 1975.

    Google Scholar 

  92. Arevalo, M.C., Maran, F., Severin, M.G., and Vianello, E., J. Electroanal. Chem., 1996, vol. 418, p. 47.

    Google Scholar 

  93. Simic, M. and Hayon, E., J. Phys. Chem., 1972, vol. 76, p. 1398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Elektrokhimiya, Vol. 41, No. 2, 2005, pp. 157–174.

Original Russian Text Copyright © 2005 by Krivenko, Kotkin, Kurmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivenko, A.G., Kotkin, A.S. & Kurmaz, V.A. Thermodynamic and kinetic characteristics of intermediates of electrode reactions: A comparative investigation of a number of alkylaryl and alkyl halide radicals by the laser photoemission methods. Russ J Electrochem 41, 137–153 (2005). https://doi.org/10.1007/s11175-005-0025-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11175-005-0025-z

Key words

Navigation