Skip to main content
Log in

Thermodynamic and kinetic characteristics of intermediates of electrode reactions: Determination by direct and combined electrochemical methods

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The potentialities of electrochemical and combined methods for the determination of thermodynamic characteristics and kinetic parameters of intermediates are analyzed. The electrochemical methods include polarography, versions of voltammetry, and chronopotentiometry. The combined methods combine nonelectrochemical (or indirect) generation of intermediates with electrochemical methods of their subsequent investigation: photomodulation voltammetry, method of polarography of pulsed-radiolysis products, method of indirect electrolysis, electrochemiluminescence, and a group of laser photoemission methods. Theoretical foundations and basic advantages and disadvantages of the laser photoemission methods (the measurement of photocurrents in potentiostatic conditions—method of time resolved voltammograms obtained under chopped illumination and the measurement of the kinetics of variations in the potential of an electrode after illuminating it by a pulsed laser—in coulostatic conditions) are described in detail. The potentialities of the laser photoemission methods for the determination of thermodynamic (standard potentials E 0 of redox pairs R/R-, standard adsorption free energies) and kinetic (values of rate constants W 0 at an equilibrium potential, bulk lifetime of radicals Rand products of their reduction R-) characteristics of intermediates are demonstrated by studying a trifluoromethyl radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Benderskii, V.A. and Krivenko, A.G., Usp. Khim. 1990, vol. 59, p. 3.

    Google Scholar 

  2. Kuznetsov, A.M., Charge Transfer in Physics, Chemistry and Biology, Amsterdam: Gordon & Brich, 1995.

    Google Scholar 

  3. Eberson, L., Electron Transfer Reactions in Organic Chemistry, Berlin: Springer, 1997.

    Google Scholar 

  4. Lund, H., J. Electrochem. Soc. 2002, vol. 149, p. S21.

    Google Scholar 

  5. Daasbjerg, K., Pedersen, S.U., and Lund, H., General Aspects of the Chemistry of Radicals, Alfassi, Z.B., Ed., New York: Wiley, 1999, p. 385.

    Google Scholar 

  6. Lund, H., Daasbjerg, K., Ochiallini, D., and Pedersen, O.U., Elektrokhimiya, 1995, vol. 31, p. 939.

    Google Scholar 

  7. Lund, H., Daasbjerg, K., Lund, T., Occhialini, D., and Pedersen, S.U., Acta Chem. Scand. 1997, vol. 51, p. 135.

    Google Scholar 

  8. Lund, H., Skov, K., Pedersen, S.U., Lund, T., and Daasbjerg, K., Coll. Czech. Chem. Commun. 2000, vol. 65, p. 829.

    Google Scholar 

  9. Pedersen, S.U., Lund, T., Daasbjerg, K., Pop, M., Fussing, I., and Lund, H., Acta Chem. Scand. 1998, vol. 52, p. 657.

    Google Scholar 

  10. Petrosyan, V.A., Elektrokhimiya, 1996, vol. 32, p. 53.

    Google Scholar 

  11. Tomilov, A.P., Mairanovskii, S.G., Fioshin, M. Ya., and Smirnov, V.A., Elektrokhimiya organicheskikh soedinenii (The Electrochemistry of Organic Compounds), Leningrad: Khimiya, 1976.

    Google Scholar 

  12. Pokhodenko, V.D., Koshechko, V.G., Titov, V.E., and Sednev, D.V., Teor. Eksp. Khim. 1992, vol. 28, p. 97.

    Google Scholar 

  13. Nonhebel, D. and Walton, J., Free-Radical Chemistry: Structure and Mechanism, Cambridge: Cambridge Univ. Press, 1974.

    Google Scholar 

  14. Pokhodenko, V.D., Beloded, A.A., and Koshechko, V.G., Okislitel’no-vosstanovitel’nye reaktsii svobodnykh radikalov (Redox Reactions Involving Free Radicals), Kiev: Naukova Dumka, 1977.

    Google Scholar 

  15. Wayner, D.D.M. and Parker, V.D., Acc. Chem. Res. 1993, vol. 26, p. 287.

    Google Scholar 

  16. Wayner, D.D.M. and Griller, D., J. Am. Chem. Soc. 1985, vol. 107, p. 7764.

    Google Scholar 

  17. Houmam, A. and Wayner, D.D.M., Acta Chem. Scand. 1998, vol. 52, p. 377.

    Google Scholar 

  18. Wayner, D.D.M., McPhee, D.J., and Griller, D., J. Am. Chem. Soc. 1988, vol. 110, p. 132.

    Google Scholar 

  19. Lieder, M., Zes. Nauk. Politech. Gdansk. 2003, no. 594.

  20. Khudyakov, I.V. and Kuz’min, V.A., Usp. Khim., 1978, vol. 47, p. 39.

    Google Scholar 

  21. Stanbury, D.M., General Aspects of the Chemistry of Radicals, Alfassi, Z.B., Ed., New York: Wiley, 1999, p. 349.

    Google Scholar 

  22. Milne, P.H., Wayner, D.D.M., DeCosta, D.P., and Pincock, J.A., Can. J. Chem. 1992, vol. 70, p. 121.

    Google Scholar 

  23. Griller, D., Martinho Simoes, J.A., Mulder, P., Sim, B.A., and Wayner, D.D.M., J. Am. Chem. Soc. 1989, vol. 111, p. 7872.

    Google Scholar 

  24. Sim, B.A., Griller, D., and Wayner, D.D.M., J. Am. Chem. Soc. 1989, vol. 111, p. 754.

    Google Scholar 

  25. Sim, B.A., Milne, P.H., Griller, D., and Wayner, D.D.M., J. Am. Chem. Soc. 1990, vol. 112, p. 6635.

    Google Scholar 

  26. Nagaoka, T., Griller, D., and Wayner, D.D.M., J. Phys. Chem. 1991, vol. 95, p. 6264.

    Google Scholar 

  27. Wayner, D.D.M., Sim, B.A., and Dannenberg, J.J., J. Org. Chem. 1991, vol. 56, p. 4853.

    Google Scholar 

  28. Smith, D.K., Strohben, W.E., and Evans, D.G., J. Electroanal. Chem. 1990, vol. 288, p. 111.

    Google Scholar 

  29. Grampp, G., Landgraf, S., and Muresanu, C., Electrochim. Acta, 2004, vol. 49, p. 537.

    Google Scholar 

  30. Henglein, A., Electroanalytical Chemistry, Bard, A.J., Ed., New York: Marcel Dekker, 1976, vol. 9, p. 163.

    Google Scholar 

  31. Evans, D.G., Chem. Rev. 1990, vol. 90, p. 739.

    Google Scholar 

  32. Kurmaz, V.A., Krivenko, A.G., Tomilov, A.P., Turygin, V.V., Khudenko, A.V., Shalashova, N.N., and Kotkin, A.S., Elektrokhimiya, 2000, vol. 36, p. 344.

    Google Scholar 

  33. Benderskii, V.A. and Benderskii, A.V., Laser Electrochemistry of Intermediates, New York: CRC Press, 1995.

    Google Scholar 

  34. Benderskii, V.A., Elektrokhimiya, 1994, vol. 30, p. 1419.

    Google Scholar 

  35. Yanilkin, V.V., Berdnikov, E.A., and Buzykin, B.I., Elektrokhimiya, 2000, vol. 36, p. 144.

    Google Scholar 

  36. Yanilkin, V.V., Elektrokhimiya, 2000, vol. 36, p. 245.

    Google Scholar 

  37. Enemaerke, R.J., Christensen, T.B., Jensen, H., and Daasbjerg, K., J. Chem. Soc., Perkin Trans. 2001, p. 1620.

  38. Lehmann, M.W., Singh, P., and Evans, D.G., J. Electroanal. Chem. 2003, vol. 539, p. 137.

    Google Scholar 

  39. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mendeleev Commun. 2000, no. 2, p. 46.

  40. Kurmaz, V.A., Krivenko, A.G., and Zlotskii, S.S., Dokl. Akad. Nauk, 2003, vol. 491, p. 353.

    Google Scholar 

  41. Wardman, P., J. Phys. Chem. Ref. Data, 1989, vol. 18, p. 1637.

    Google Scholar 

  42. Loukova, G.V. and Strelets, V.V., Coll. Czech. Chem. Commun. 2001, vol. 66, p. 185.

    Google Scholar 

  43. Galus, Z., Teoretyczne podstawy electroanalizy chemicznej, Warszawa: Panstwowe Wydawnictwo Naukowe, 1971.

    Google Scholar 

  44. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2001.

    Google Scholar 

  45. Kern, J.M. and Federlin, P., Tetrahedron, 1978, vol. 34, p. 661.

    Google Scholar 

  46. Jaun, B., Schwarz, J., and Breslow, R., J. Am. Chem. Soc. 1980, vol. 102, p. 5741.

    Google Scholar 

  47. Lund, T. and Pedersen, S.U., J. Electroanal. Chem., 1993, vol. 362, p. 109.

    Google Scholar 

  48. Oliver, E.W. and Evans, D.G., J. Electroanal. Chem. 1997, vol. 432, p. 145.

    Google Scholar 

  49. Bordwell, F.G. and Zhang, X.-M., Acc. Chem. Res. 1993, vol. 26, p. 510.

    Google Scholar 

  50. Maran, F. and Vianello, E., Tetrahedron Lett. 1990, vol. 31, p. 5803.

    Google Scholar 

  51. Arnett, E.M., Flowers, R.A., Ludwig, R.T., Meekhof, A.E., and Walek, S.A., J. Phys. Org. Chem. 1997, vol. 10, p. 499.

    Google Scholar 

  52. Zhang, X.M., Bruno, J.W., and Enyinnaya, E., J. Org. Chem. 1998, vol. 63, p. 4671.

    Google Scholar 

  53. Kato, Y., Shimizu, Y., Lin, Y.J., Unoura, K., Utsumi, H., and Ogata, T., Electrochim. Acta, 1995, vol. 40, p. 2799.

    Google Scholar 

  54. Rychnovsky, S.D., Vaidyanathan, R., Beauchamp, T., Lin, R., and Farmer, P.J., J. Org. Chem. 1999, vol. 64, p. 6745.

    Google Scholar 

  55. Cren-Olive, C., Hapiot, P., Pinson, J., and Rolando, C., J. Am. Chem. Soc. 2002, vol. 124, p. 14027.

    Google Scholar 

  56. Hapiot, P., Pinson, J., and Yousfi, N., New J. Chem. 1992, vol. 16, p. 877.

    Google Scholar 

  57. Andrieux, C.P., Hapiot, P., Pinson, J., and Savéant, J.-M., J. Am. Chem. Soc., 1993, vol. 115, p. 7783.

    Google Scholar 

  58. Li, C. and Hoffman, M.Z., J. Phys. Chem. B, 1999, vol. 103, p. 6653.

    Google Scholar 

  59. Andrieux, C.P., Hapiot, P., and Savéant, J.-M., Chem. Rev. 1990, vol. 90, p. 723.

    Google Scholar 

  60. Pardo, I., Angulo, M., Marin, Galvin R., and Mellado, J.M.R., Electrochim. Acta, 1996, vol. 41, p. 133.

    Google Scholar 

  61. Scholz, F. and Hermes, M., Electrochem. Commun. 1999, vol. 1, p. 345.

    Google Scholar 

  62. Scholz, F. and Hermes, M., Electrochem. Commun. 2000, vol. 2, p. 814.

    Google Scholar 

  63. Andrieux, C.P., Gallardo, I., and Savéant, J.-M., J. Am. Chem. Soc. 1989, vol. 111, p. 1620.

    Google Scholar 

  64. Andrieux, C.P., Savéant, J.-M., and Su, K.B., J. Phys. Chem. 1986, vol. 90, p. 3815.

    Google Scholar 

  65. Andrieux, C.P., Gelis, L., Medebielle, M., Pinson, J., and Savéant, J.-M., J. Am. Chem. Soc. 1990, vol. 112, p. 3509.

    Google Scholar 

  66. Grätzel, M., Henglein, A., Lilie, J., and Scheffler, M., Ber. Bunsen-Ges. Phys. Chem. 1972, vol. 76, p. 67.

    Google Scholar 

  67. Toffel, P. and Henglein, A., Discus. Faraday Soc. 1978, vol. 63, p. 124.

    Google Scholar 

  68. Lilie, J., Beck, G., and Henglein, A., Ber. Bunsen-Ges. Phys. Chem. 1971, vol. 75, p. 458.

    Google Scholar 

  69. Lai, R.Y. and Bard, A.J., J. Phys. Chem. A, 2003, vol. 107, p. 3335.

    Google Scholar 

  70. Jones, W.E. and Fox, M.A., J. Phys. Chem. 1994, vol. 98, p. 5095.

    Google Scholar 

  71. Jonsson, M. and Kraatz, H.B., J. Chem. Soc., Perkin Trans. 1997, p. 2673.

  72. Lund, T., Wayner, D.D.M., Jonsson, M., Larsen, A.G., and Daasbjerg, K., J. Am. Chem. Soc. 2001, vol. 123, p. 12590.

    Google Scholar 

  73. Larsen, A.G., Holm, A.H., Roberson, M., and Daasbjerg, K., J. Am. Chem. Soc., 2001, vol. 123, p. 1723.

    Google Scholar 

  74. Fuhlendorf, R., Occialini, D., Pedersen, S.U., and Lund, H., Acta Chem. Scand. 1989, vol. 43, p. 803.

    Google Scholar 

  75. Occialini, D., Pedersen, S.U., and Lund, H., Acta Chem. Scand. 1990, vol. 44, p. 715.

    Google Scholar 

  76. Occialini, D., Kristensen, J.S., Pedersen, S.U., and Lund, H., Acta Chem. Scand. 1992, vol. 46, p. 474.

    Google Scholar 

  77. Occialini, D., Daasbjerg, K., and Lund, H., Acta Chem. Scand. 1993, vol. 47, p. 1100.

    Google Scholar 

  78. Kjaersbo, T., Daasbjerg, K., and Pedersen, S.U., Electrochim. Acta, 2003, vol. 48, p. 1807.

    Google Scholar 

  79. Mikkelsen, K.V., Pedersen, S.U., Lund, H., and Swanstrm, P., J. Phys. Chem. 1991, vol. 95, p. 8892.

    Google Scholar 

  80. Gennaro, A., Isse, A.A., and Maran, F., J. Electroanal. Chem. 2001, vol. 507, p. 124.

    Google Scholar 

  81. Cardinale, A., Isse, A.A., and Gennaro, A., Electrochem. Commun. 2002, vol. 4, p. 767.

    Google Scholar 

  82. Isse, A.A., Ferlin, M.G., and Gennaro, A., J. Electroanal. Chem. 2003, vol. 541, p. 93.

    Google Scholar 

  83. Lund, H., Michel, M.-A., and Simonet, J., Acta Chem. Scand. 1974, vol. 28, p. 900.

    Google Scholar 

  84. Eletskii, V.V. and Pleskov, Yu.V., Elektrokhimiya, 1978, vol. 14, p. 1768.

    Google Scholar 

  85. Brodskii, A.M., Gurevich, Yu.Ya., Pleskov, Yu.V., and Rotenberg, Z.A., Sovremennaya photoelektrokhimiya: Fotoemissionnye yavleniya (Modern Photoelectrochemistry: The Photoemission Phenomena), Moscow: Nauka, 1974.

    Google Scholar 

  86. Benderskii, V.A. and Brodskii, A.M., Fotoemissiya iz metallov v rastvory elektrolitov (Photoemission from Metals into Electrolytic Solutions), Moscow: Nauka, 1977.

    Google Scholar 

  87. Konovalov, V.V. and Tsvetkov, Yu.D., Dokl. Akad. Nauk SSSR, 1996, vol. 346, p. 493.

    Google Scholar 

  88. Konovalov, V.V., Laev, S.S., Beregovaya, I.V., Shchegoleva, L.N., Shteingarts, V.D., Tsvetkov, Yu.D., and Bilkis, I.I., J. Phys. Chem. A, 2000, vol. 104, p. 352.

    Google Scholar 

  89. Barker, J. and Gardner, A., Osnovnye voprosy sovremennoi teoreticheskoi elektrokhimii (Basic Problems in Modern Theoretical Electrochemistry), Frumkin, A.N., Ed., Moscow: Mir, 1965.

    Google Scholar 

  90. Hapiot, Ph., Konovalov, V.V., and Savéant, J.-M., J. Am. Chem. Soc. 1995, vol. 117, p. 1428.

    Google Scholar 

  91. Gonzalez, J., Hapiot, Ph., Konovalov, V.V., and Savéant, J.-M., J. Am. Chem. Soc. 1998, vol. 120, p. 10171.

    Google Scholar 

  92. Gonzalez, J., Hapiot, Ph., Konovalov, V.V., and Savéant, J.-M., J. Electroanal. Chem. 1999, vol. 463, p. 157.

    Google Scholar 

  93. Gamby, J., Hapiot, Ph., and Savéant, J.-M., J. Am. Chem. Soc. 2002, vol. 124, p. 8798.

    Google Scholar 

  94. Gamby, J., Hapiot, Ph., and Savéant, J.-M., J. Phys. Chem. A, 2003, vol. 107, p. 7445.

    Google Scholar 

  95. Krivenko, A.G. and Kurmaz, V.A., Abstracts of Papers, XIV Soveshchanie EKhOS (XIV Meet. EKhOS), Novocherkassk, 1998, p. 14.

  96. Krivenko, A.G., Kotkin, A.S., Kurmaz, V.A., Titov, V.E., Lopushanskaya, V.A., and Koshechko, V.G., Zh. Teor. Eksp. Khim. 2000, vol. 36, p. 354.

    Google Scholar 

  97. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mendeleev Commun. 2002, no. 1, p. 11.

  98. Benderskii, V.A., Krivenko, A.G., and Kotkin, A.S., Elektrokhimiya, 1993, vol. 29, p. 449.

    Google Scholar 

  99. Benderskii, A.V., Benderskii, V.A., and Krivenko, A.G., J. Electroanal. Chem. 1995, vol. 380, p. 7.

    Google Scholar 

  100. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mendeleev Commun. 1998, no. 2, p. 56.

  101. Krivenko, A.G., Kotkin, A.S., Kurmaz, V.A., and Simbirtseva, G.V., Elektrokhimiya, 2002, vol. 38, p. 1147.

    Google Scholar 

  102. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Electrochim. Acta, 2002, vol. 47, p. 3891.

    Google Scholar 

  103. Benderskii, V.A. and Krivenko, A.G., Elektrokhimiya, 1985, vol. 21, p. 1507.

    Google Scholar 

  104. Benderskii, V.A., Krivenko, A.G., and Ponomarev, E.A., Elektrokhimiya, 1989, vol. 25, p. 186.

    Google Scholar 

  105. Benderskii, V.A., Krivenko, A.G., and Ponomarev, E.A., Elektrokhimiya, 1989, vol. 25, p. 178.

    Google Scholar 

  106. Benderskii, V.A., Krivenko, A.G., and Simbirtseva, G.V., Elektrokhimiya, 1987, vol. 23, p. 748.

    Google Scholar 

  107. Benderskii, V.A., Krivenko, A.G., and Simbirtseva, G.V., Izv. Akad. Nauk SSSR, Ser. Khim. 1990, p. 1508.

  108. Benderskii, V.A., Krivenko, A.G., Kurmaz, V.A., and Simbirtseva, G.V., Elektrokhimiya, 1986, vol. 22, p. 915.

    Google Scholar 

  109. Babenko, S.D., Benderskii, V.A., Krivenko, A.G., and Kurmaz, V.A., J. Electroanal. Chem. 1983, vol. 159, p. 163.

    Google Scholar 

  110. Krivenko, A.G., Kurmaz, V.A., Kotkin, A.S., Krestinin, A.V., and Zvereva, G.I., Elektrokhimiya, 2003, vol. 39, p. 1207.

    Google Scholar 

  111. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Elektrokhimiya, 2005, vol. 41, p. 152.

    Google Scholar 

  112. Matsumura, Y., Adv. Mol. Conv. 1991, p. 307.

  113. Lieder, M., Phosph. Sulfur Silicon Relat. Elem. 2003, vol. 178, p. 179.

    Google Scholar 

  114. Holm, A.H., Yusta, L., Carlqvist, P., Brinck, T., and Daasbjerg, K., J. Am. Chem. Soc. 2003, vol. 125, p. 2148.

    Google Scholar 

  115. Tsirlina, G.A., Kharkats, Yu. I., Nazmutdinov, R.R., and Petrii, O.A., J. Electroanal. Chem. 1998, vol. 450, p. 63.

    Google Scholar 

  116. Nazmutdinov, R.R., Glukhov, D.V., Tsirlina, G.A., and Petrii, O.A., Elektrokhimiya, 2003, vol. 39, p. 105.

    Google Scholar 

  117. Bodner, G.S., Gladysz, J.A., Nielsen, M.F., and Parker, V.D., J. Am. Chem. Soc. 1987, vol. 109, p. 1757.

    Google Scholar 

  118. Koutentis, P.A., Chen, Y., Cao, Y., Best, T.P., Itkis, M.E., Beer, L., Oakley, R.T., Cordes, A.W., Brock, C.P., and Haddon, R.C., J. Am. Chem. Soc. 2001, vol. 123, p. 3684.

    Google Scholar 

  119. Boere, R.T. and Roemmele, T.L., Coord. Chem. Rev. 2000, vol. 210, p. 369.

    Google Scholar 

  120. Andrieux, C.P., Crzeszczuk, M., and Savéant, J.-M., J. Am. Chem. Soc. 1991, vol. 113, p. 8811.

    Google Scholar 

  121. Andrieux, C.P. and Pinson, J., J. Am. Chem. Soc.,2003, vol. 125, p. 14801.

    Google Scholar 

  122. Mendkovich, A.S. and Gul’tyai, V.P., Teoreticheskie osnovy khimii organicheskikh anion-radikalov (Basics of the Chemistry of Organic Radical Anions), Moscow: Nauka, 1990.

    Google Scholar 

  123. Andersen, M.L. and Wayner, D.D.M., J. Electroanal. Chem. 1996, vol. 412, p. 53.

    Google Scholar 

  124. Mattew, L.W. and Peters, D.G., J. Electroanal. Chem. 1992, vol. 327, p. 121.

    Google Scholar 

  125. Tomilov, A.P., Chernykh, I.N., and Kargin, Yu.M., Elektrokhimiya elementoorganicheskikh soedinenii: elementy I, II, i III grupp periodicheskoi sistemy (The Electrochemistry of Organoelement Compounds: Elements of Groups I, II, and III of the Periodic Table), Moscow: Nauka, 1985.

    Google Scholar 

  126. Kulakovskaya, S.I., Berdnikov, V.M., Tikhonov, A.Ya., Volodarskii, L.B., and Maier, V.E., Elektrokhimiya, 1993, vol. 29, p. 48.

    Google Scholar 

  127. Girina, A.P., Feoktistov, L.G., and Alpatova, N.M., Elektrokhimiya, 2002, vol. 38, p. 1498.

    Google Scholar 

  128. Ershler, A.B., Progress elektrokhimii organicheskikh soedinenii: Elektrosintez i bioelektrokhimiya (Progress in the Electrochemistry of Organic Compounds: Electrosynthesis and Bioelectrochemistry), Frumkin, A.N., Stradins, J., and Feoktistov, L.G., Eds., Moscow: Nauka, 1975, p. 199.

    Google Scholar 

  129. Organic Electrochemistry: An Introduction and a Guide, Baizer, M.M., Ed., New York: Marcel Dekker, 1973.

    Google Scholar 

  130. Gross, M. and Jordan, J., Pure Appl. Chem. 1984, vol. 56, p. 1095.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Krivenko.

Additional information

Translated from Elektrokhimiya, Vol. 41, No. 2, 2005, pp. 142–156.

Original Russian Text Copyright © 2005 by Krivenko, Kotkin, Kurmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivenko, A.G., Kotkin, A.S. & Kurmaz, V.A. Thermodynamic and kinetic characteristics of intermediates of electrode reactions: Determination by direct and combined electrochemical methods. Russ J Electrochem 41, 122–136 (2005). https://doi.org/10.1007/s11175-005-0024-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11175-005-0024-0

Key words

Navigation