Skip to main content
Log in

Age-related features of protein synthesis rhythm. Effects of extracellular medium

  • Biochemistry of Development
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Cell interactions have been studied in cultures pf hepatocytes from young and old rats. The rhythm of protein synthesis is an index of cell interaction and synchronization in culture, while the amplitude of oscillations characterized cell cooperation in an aggregate rhythm. The mean rhythm amplitude in the culture of hepatocytes from old rats is twice lower than that from young rats. Gangliosides (mixture, bovine brain gangliosides) and α1-adrenomimetic phenylephrine enhanced synchronization of cultures of the cells from old rats and increased the amplitude of oscillations to the level of young animals. Addition of rat blood serum (10%) to the medium revealed the rhythm of protein synthesis in the culture, asynchronous in the control, i.e., led to their synchronization. In media with young and old rat blood sera, oscillations were intense, with high amplitudes, and low, respectively. Addition of bovine brain gangliosides to a medium with old rat blood serum increased the amplitudes of oscillations to a level of the rhythm stimulated by the young rat serum. Thus, the cells of old animals can fully perceive synchronizing factors and, in the case of their increased concentration, the rhythm of protein synthesis in old animals did not differ from that in young rats. Current data on biochemical mechanisms underlying intercellular cooperation in the formation of population rhythm of protein synthesis have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aon, M.A., Cortassa, S., and Lloyd, D., Chaotic Dynamics and Fractal Space in Biochemistry: Simplicity Underlines Complexity, Cell Biol. Internat., 2000, vol. 24, pp. 581–587.

    Google Scholar 

  • Arakane, F., Fukunada, K., Satake, M., et al., Stimulation of Cyclic Adenosine 3’,5’-Monophosphat Dependent Protein Kinase with Brain Gangliosides, Neurochem. Internat., 1995, vol. 26, pp. 187–193.

    Google Scholar 

  • Bergelson, L.D., Serum Gangliosides as Endogenous Immunomodulators, Immunol. Today, 1995, vol. 16, pp. 483–486.

    Google Scholar 

  • Berrie, C.P. and Cobbold, P.H., Both Activators and Inhibitors of Protein Kinase C Promote the Inhibition of Phenylephrine-Induced Ca2+ Oscillations in Single Rat Hepatocytes, Cell Calcium, 1995, vol. 18, pp. 232–244.

    Google Scholar 

  • Bhoola, R. and Hammond, K., Modulation of the Rhythmic Patterns of Expression of Phosphoprotein Phosphatases in Human Leukaemia Cells, Cell Biol. Internat, 2000, vol. 24, pp. 539–547.

    Google Scholar 

  • Brodsky, V.Y., Protein Synthesis Rhythm, J. Theor. Biol., 1975, vol. 55, pp. 397–407.

    Google Scholar 

  • Brodsky, V.Ya., Rhythm of Protein Synthesis and Other Circahoralian Oscillations, Ultradian Rhythms in Life Processes, Lloyd, D. and Rossi, E.L., Eds., London: Springer, 1992, pp. 23–40.

    Google Scholar 

  • Brodsky, V.Ya., On the Nature of Circahoralian (Ultradian) Intracellular Rhythms: Similarity with Fractals, Izv. Akad. Nauk, Ser. Biol., 1998, no. 3, pp. 316–329.

    Google Scholar 

  • Brodsky, V.Ya., Circahoralian (Ultradian) Cell Rhythms: Onset of Studies and Some Results, Ontogenez, 2000, vol. 31, pp. 410–419.

    Google Scholar 

  • Brodsky, V.Y., Boikov, P.Y., Nechaeva, N.V., et al., The Rhythm of Protein Synthesis Does Not Depend on Oscillations of ATP Level, J. Cell Sci., 1992, vol. 103, pp. 363–370.

    Google Scholar 

  • Brodsky, V.Ya., Nechaeva, N.V., Novikova, T.E., et al., Distant Cell Interactions in a Culture of Hepatocytes, Izv. Akad. Nauk, Ser. Biol., 1994, no. 6, pp. 946–948.

  • Brodsky, V.Ya., Nechaeva, N.V., Novikova, T.E., et al., Conditioned Medium Enhances Synchronization of Oscillations in Protein Synthesis Intensity in Hepatocytes in vitro, Dokl. Akad. Nauk, 1995, vol. 340, pp. 712–714.

    Google Scholar 

  • Brodsky, V.Ya., Nechaeva, N.V., Zvezdina, N.D., et al., Gangliosides Synchronize Protein Synthesis Rhythm in Hepatocytes in vitro, Izv. Akad. Nauk, Ser. Biol., 1996a, no. 5, pp. 517–522.

  • Brodsky, V.Ya., Nechaeva, N.V., Terskikh, V.V., et al., Serum-Free Medium Preserving Normal Morphology and High Level of Protein Synthesis in Hepatocytes in vitro, Izv. Akad. Nauk, Ser. Biol., 1996b, no. 4, pp. 398–401.

  • Brodsky, V.Ya., Nechaeva, N.V., Zvezdina, N.D., et al., Synchronization of Protein Synthesis Rhythm in Cultures of Hepatocytes Takes Place upon Medium Conditioning with Accumulation of Ganglioside GM1 in Cells: An Immunocytochemical Study, Izv. Akad. Nauk, Ser. Biol., 1997, no. 4, pp. 389–399.

  • Brodsky, V.Ya., Nechaeva, N.V., Avdonin, P.V., et al., Phenylephrine Synchronizes Protein Synthesis Rhythm in Cultures of Hepatocytes, Izv. Akad. Nauk, Ser. Biol., 2000a, no. 1, pp. 12–16.

  • Brodsky, V.Y., Nechaeva, N.V., Zvezdina, N.D., et al., Ganglioside Mediated Synchronization of Protein Synthesis Activity in Cultured Hepatocytes, Cell Biol. Internat., 2000b, vol. 24, pp. 211–222.

    Google Scholar 

  • Brodsky, V.Ya., Khavinson, V.Kh., Zolotarev, Yu.A., et al., Protein Synthesis Rhythm in Hepatocytes from Rats of Different Ages. Norm and Effect of the Peptide Livagen, Izv. Akad. Nauk, Ser. Biol., 2001, no. 5, pp. 517–521.

  • Brodsky, V. Ya., Nechaeva, N.V., Zvezdina, N.D., et al., Cooperation of Hepatocytes in vitro Is Intensified by Ganglioside GM1 in Vesicles and Liposomes, Izv. Akad. Nauk, Ser. Biol., 2003a, no. 6, pp. 650–656.

  • Brodsky, V.Y., Zvezdina, N.D., Nechaeva, N.V., et al., Calcium Ions As a Factor of Cell-Cell Cooperation in Hepatocyte Cultures, J. High Resolut. Chromatogr. Chromatogr. Commun., 2003b, vol. 27, pp. 965–976.

    Google Scholar 

  • Calvert-Evers, J.L. and Hammond, K.D., Temporal Variations in Protein Tyrosine Phosphatase Activity during Cell Proliferation and Differentiation, J. High Resolut. Chromatogr. Chromatogr. Commun., 2000, vol. 24, pp. 559–567.

    Google Scholar 

  • Chan, K.-F.J., Effects of Gangliosides on Protein Phosphorylation in Rat Brain Myelin, Neurosci. Res. Commun., 1989, vol. 5, pp. 95–104.

    Google Scholar 

  • Cobbold, P.H., Sanchez-Bueno, A., and Dixon, C.J., The Hepatocyte Calcium Oscillator, Cell Calcium, 1991, vol. 12, pp. 87–97.

    Google Scholar 

  • Elbert, T., Ray, W.J., Kovalic, Z.J., et al., Chaos and Physiology: Deterministic Chaos in Excitable Cell Assemblies, Physiol. Rev., 1994, vol. 74, pp. 1–47.

    Google Scholar 

  • Ferrari, G., Anderson, B.L., Stephens, R.M., et al., Prevention of Apoptotic Neuronal Death by GM1 Ganglioside, J. Biol. Chem., 1995, vol. 270, pp. 3074–3080.

    Google Scholar 

  • Ferreira, G.M.H., Hammond, K., and Gilbert, D., Insulin Stimulation of High Frequency Phosphorylation Dynamics in Murine Erythroleukemic Cells, BioSystems, 1994, vol. 33, pp. 31–43.

    Google Scholar 

  • Fractals in Science, Bunde, A. and Havlin, S., Eds., New York: Springer, 1994.

    Google Scholar 

  • Gelfand, I.M. and Tsetlin, M.L., On Continual Models of Controlling Systems, Dokl. Akad. Nauk SSSR, 1960, vol. 131, pp. 1242–1245.

    Google Scholar 

  • Goldering, J.R., Otis, L.O., Yu, R.K., and DeLorenzo, R.J., Calcium/Ganglioside—Dependent Protein Kinase Activity in Rat Brain Membrane, J. Neurochem., 1985, vol. 44, pp. 1229–1234.

    Google Scholar 

  • Gony, H., Detere, P., Debre, P., and Bismuth, G., Cell Calcium Signaling Via GM1 Cell Surface Ganglioside in the Human Jurkat T Cell Line, J. Immunol., 1994, vol. 152, pp. 3271–3281.

    Google Scholar 

  • Guerold, B., Massarelli, R., Forster, V., et al., Exogenous Gangliosides Modulate Calcium Fluxes in Cultured Neuronal Cells, J. Neurosci. Res., 1992, vol. 32, pp. 110–115.

    Google Scholar 

  • Hakomori, S.-I., Glycosphingolipids in Cellular Interaction, Differentiation and Oncogenesis, Annu. Rev. Biochem., 1981, vol. 50, pp. 733–764.

    Google Scholar 

  • Hakomori, S.-I., Bifunctional Role of Glycosphingolipids, J. Biol. Chem., 2000, vol. 265, pp. 8713–8716.

    Google Scholar 

  • Hammond, K.D., Bhoola, R., Bodalina, U., and Gilbert, D., Dynamic Cells: Temporal Organization and Control of Phosphorylation, Trends Comp. Biochem., 1998, vol. 4, pp. 75–88.

    Google Scholar 

  • Harpin, M.L., Boutry, J.M., Hauw, J.J., et al., Fetal Calf Serum Gangliosides, In Vitro Cell Devel. Biol., 1990, vol. 26, pp. 217–219.

    Google Scholar 

  • Isasi, S.C., Bianko, I.D., and Fidelio, G.D., Gangliosides Raise the Intracellular Ca2+ Level in Different Cell Types, Life Sci., 1995, vol. 57, pp. 449–456.

    Google Scholar 

  • Jensen, E.W., Eldrup, E., Kelbaek, H., et al., Venous Plasma Noradrenaline Increases with Age: Correlation with Total Blood Volume and Long-Term Smoking Habits, Clin. Physiol., 1993, vol. 13, pp. 99–109.

    Google Scholar 

  • Kawanishi, T., Blank, L.M., Harootunian, A.T., et al., Ca2+ Oscillations Induced by Hormonal Stimulation of Individual Fura-2-Loaded Hepatocytes, J. Biol. Chem., 1989, vol. 264, pp. 12859–12866.

    Google Scholar 

  • Klevecz, R.R., A Precise Circadian Clock from Chaotic Cell Cycle Oscillations, Ultradian Rhythms in Life Processes, Lloyd, D. and Rossi, E.L., Eds., London: Springer, 1992, pp. 41–69.

    Google Scholar 

  • Kreutter, D., Kim, J.Y., Goldenberg, J.R., et al., Regulation of Protein Kinase C Activity by Gangliosides, J. Biol. Chem., 1987, vol. 262, pp. 633–1637.

    Google Scholar 

  • Lloyd, A.L. and Lloyd, D., Hypothesis: the Central Oscillator of the Circadian Clock Is a Controlled Chaotic Attractor, Bio-Systems, 1993, vol. 29, pp. 77–85.

    Google Scholar 

  • Lloyd, A.L. and Lloyd, D., Chaos: Its Significance and Detection in Biology, Biol. Rhythm Res., 1995, vol. 26, pp. 233–252.

    Google Scholar 

  • Nagai, Y., Functional Roles of Gangliosides in Bio-Signaling, Behav. Brain Res., 1995, vol. 66, pp. 99–104.

    Google Scholar 

  • Nakamura, Y., Hishimoto, Y., Yamakawa, T., and Suzuki, A., Age-Dependent Changes in GM1 and GD1a Expression in Mouse Liver, J. Biochem., 1993, vol. 103, pp. 396–398.

    Google Scholar 

  • Ozkok, E., Cendiz, S., and Guevener, B., Age-Dependent Changes in Liver Ganglioside Levels, J. Basic. Clin. Physiol. Pharmacol., 1999, vol. 10, pp. 337–344.

    Google Scholar 

  • Prozorovskaya, M.P., Age-Related Changes of Adrenaline/Noradrenaline Ratio in Rat Tissues, Fiziol. Zh. SSSR. im. Sechenova, 1983, vol. 69, pp. 1244–1246.

    Google Scholar 

  • Rooney, T.A., Sass, E.J., and Thomas, A.P., Agonist-Induced Cytosolic Calcium Oscillations Originate from Specific Locus in Single Hepatocyte, J. Biol. Chem., 1990, vol. 265, pp. 10792–10796.

    Google Scholar 

  • Sarti, P., Antonioni, G., Malatesta, F., and Vallone, B., Effect of Gangliosides on Membrane Permeability Studied by Enzyme and Fluorescence Spectroscopy Techniques, Biochem. J., 1990, vol. 267, pp. 413–416.

    Google Scholar 

  • Senn, H.J., Orth, M., Fitzke, E., et al., Gangliosides in Normal Human Serum. Concentrations, Pattern and Transport by Lipoproteins, Eur. J. Biochem., 1989, vol. 181, pp. 657–662.

    Google Scholar 

  • Slomiany, B.L., Liu, J., Fekete, Z., et al., Modulation of Dihydropiridine-Sensitive Mucosal Calcium Channels by GM1 Ganglioside, Int. J. Biochem., 1992, vol. 24, pp. 1289–1294.

    Google Scholar 

  • Tettamanti, G. and Riboni, L., Gangliosides Turnover and Neural Function, Progr. Brain Res., 1994, vol. 101, pp. 77–100.

    Google Scholar 

  • Tordjmann, T., Berthon, B., Claret, M., and Combettes, L., Coordinated Intercellular Calcium Waves Induced by Noradrenaline in Rat Hepatocytes, EMBO J., 1997, vol. 16, pp. 5398–5407.

    Google Scholar 

  • Ultradian Rhythms in Life Processes, Lloyd, D. and Rossi, E.L., Eds., London: Springer, 1992.

    Google Scholar 

  • Woods, N.M., Cuthbertson, K.S.R., and Cobbold, P.H., Repetitive Rises in Cytoplasmic Free Calcium in Hormone-Stimulated Hepatocytes, Nature, 1986, vol. 319, pp. 600–602.

    Google Scholar 

  • Wu, G. and Ledeen, R.W., Gangliosides As Modulators of Neuronal Calcium, Progr. Brain Res., 1994, vol. 101, pp. 101–112.

    Google Scholar 

  • Wu, G., Vaswani, K.K., Lu, Z.H., and Ledeen, R.W., Gangliosides Stimulate Calcium Flux in Neuro-2A Cells and Require Exogenous Calcium for Neutitogenesis, J. Neurochem., 1990, vol. 55, pp. 484–491.

    Google Scholar 

  • Yates, A.J. and Rampersaud, A., Sphingolipids as Receptor Modulators. An Overview, Ann. New York: Acad. Sci., 1998, vol. 845, pp. 57–71.

    Google Scholar 

  • Yates, A.J., Walters, J.D., Wood, C.L., and Johnson, J.D., Ganglioside Modulation of Cyclic AMP-Dependent Kinase and Cyclic Nucleotide Phosphorylase in vitro, J. Neurochem., 1989, vol. 53, pp. 162–167.

    Google Scholar 

  • Yatomi, Y., Igarashi, Y., and Hakomori, S., Effects of Exogenous Gangliosides on Intracellular Ca2+ Mobilization and Functional Responses in Human Platelets, Glycobiology, 1996, vol. 6, pp. 347–353.

    Google Scholar 

  • Yu, R.K., Ariga, T., Yohino, H., et al., Differential Effects of Glycosphingolipids on Protein Kinase C Activity in PC12D Pheochromocytoma Cells, J. Biomed. Sci., 1994, vol. 229–236.

  • Zaguskin, S.L., A Possible Physical Nature of Intracellular and Intercellular Synchronization of Protein Synthesis Rhythms, Izv. Ross. Akad. Nauk, Ser. Biol., 2004 (in press).

  • Zvezdina, N.D., Gracheva, E.V., Golovanova, N.K., et al., Accumulation of Ganglioside GM1 in Medium Conditioned by a Culture of Rat Hepatocytes, Izv. Akad. Nauk, Ser. Biol., 2000, no. 1, pp. 405–412.

  • Zvezdina, N.D., Nechaeva, N.V., Gracheva, E.V., et al., Disturbed Cooperation of Hepatocytes in Protein Synthesis Rhythm by Chelator Cytoplasmic Calcium BAPTA-AM, Izv. Akad. Nauk, Ser. Biol., 2003, no. 1, pp. 14–19.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ontogenez, Vol. 36, No. 1, 2005, pp. 9–17.

Original Russian Text Copyright © 2005 by Brodsky, Nechaeva, Zvezdina, Novikova, Gvazava, Fateeva, Mal’chenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodsky, V.Y., Nechaeva, N.V., Zvezdina, N.D. et al. Age-related features of protein synthesis rhythm. Effects of extracellular medium. Russ J Dev Biol 36, 6–13 (2005). https://doi.org/10.1007/s11174-005-0002-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11174-005-0002-1

Key words

Navigation