Skip to main content
Log in

Synthesis and antimicrobial activity of new thiomonoterpene carboxylic acids

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A series of new compounds containing monoterpenoid fragments, sulfide and carboxy groups was synthesized. The reaction of monoterpene thiols with bromoacetic acid and ethyl 2-bromo-2,2-difluoroacetate afforded new thiomonoterpene carboxylic acids in 80–96% and 56–80% yields, respectively. The synthesized compounds were studied for antimicrobial activity. Some structure–property interrelations were revealed, which depended on the monoterpene fragment structure and the presence of fluorine atoms in the carboxymethyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. F. Ruggieri, N. Compagne, K. Antraygues, M. Eveque, M. Flipo, N. Willand, Eur. J. Med. Chem., 2023, 256, 115413; DOI: https://doi.org/10.1016/j.ejmech.2023.115413.

    Article  CAS  PubMed  Google Scholar 

  2. J. M. A. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, L. J. V. Piddock, Nat. Rev. Microbiol., 2015, 13, 42; DOI: https://doi.org/10.1038/nrmicro3380.

    Article  CAS  PubMed  Google Scholar 

  3. L. E. Nikitina, N. P. Artemova, V. A. Startseva, Prirodnye i tiomodifitsirovannye monoterpenoidy [Natural and Thiomodified Monoterpenoids], LAP LAMBERT Academic Publishing, Saarbrücken, Germany, 2012, 176 pp. (in Russian).

    Google Scholar 

  4. S. G. Griffin, S. G. Wyllie, J. L. Markham, D. N. Leach, Flavour Fragr. J., 1999, 14, 322; DOI: https://doi.org/10.1002/(SICI)1099-1026(199909/10)14:5<322::AID-FFJ837>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  5. S. G. Griffin, S. G. Wyllie, J. L. Markham, J. Essent. Oil Res., 2005, 17, 686; DOI: https://doi.org/10.1080/10412905.2005.9699033.

    Article  CAS  Google Scholar 

  6. V. V. Gavrilov, V. A. Startseva, L. E. Nikitina, O. A. Lodochnikova, O. I. Gnezdilov, S. A. Lisovskaya, N. I. Glushko, E. N. Klimovitskii, Pharm. Chem. J., 2010, 44, 126; DOI: https://doi.org/10.1007/s11094-010-0413-x.

    Article  CAS  Google Scholar 

  7. M. Mancuso, M. Catalfamo, P. Laganà, A. C. Rappazzo, V. Raymo, D. Zampino, R. Zaccone, Flavour Fragr. J., 2019, 34, 187; DOI: https://doi.org/10.1002/ffj.3491.

    Article  CAS  Google Scholar 

  8. S. P. Patil, S. T. Kumbhar, Beni-Suef Univ. J. Basic Appl. Sci., 2018, 7, 511; DOI: https://doi.org/10.1016/j.bjbas.2018.06.002.

    Google Scholar 

  9. A. C. Guimarães, L. M. Meireles, M. F. Lemos, M. C. C. Guimarães, D. C. Endringer, M. Fronza, R. Scherer, Molecules, 2019, 24, 2471; DOI: https://doi.org/10.3390/molecules24132471.

    Article  PubMed  PubMed Central  Google Scholar 

  10. D. Kifer, V. Mužinić, M. Š. Klarić, J. Antibiot., 2016, 69, 689; DOI: https://doi.org/10.1038/ja.2016.10.

    Article  CAS  Google Scholar 

  11. L. Cordeiro, P. Figueiredo, H. Souza, A. Sousa, F. Andrade-Júnior, J. Barbosa-Filho, E. Lima, Pharma ceuticals, 2020, 13, 133; DOI: https://doi.org/10.3390/ph13060133.

    Article  CAS  Google Scholar 

  12. A. Selvaraj, A. Valliammai, C. Sivasankar, M. Suba, G. Sakthivel, S. K. Pandian, Sci. Rep., 2020, 10, 21975; DOI: https://doi.org/10.1038/s41598-020-79128-x.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. A. Zacchino, E. Butassi, E. Cordisco, L. A. Svetaz, Phytomedicine, 2017, 37, 14; DOI: https://doi.org/10.1016/j.phymed.2017.10.021.

    Article  CAS  PubMed  Google Scholar 

  14. R. Y. Mahmoud, E. Y. Trizna, R. K. Sulaiman, R. S. Pavelyev, I. R. Gilfanov, S. A. Lisovskaya, O. V. Ostolopovskaya, L. L. Frolova, A. V. Kutchin, G. B. Guseva, E. V. Antina, M. B. Berezin, L. E. Nikitina, A. R. Kayumov, Antibiotics, 2022, 11, 1743; DOI: https://doi.org/10.3390/antibiotics11121743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. V. Sofronov, I. S. Nizamov, L. A. Almetkina, L. E. Nikitina, D. G. Fatyhova, P. V. Zelenikhin, O. N. Il’inskaya, R. A. Cherkasov, Russ. J. Gen. Chem., 2010, 80, 1722; DOI: https://doi.org/10.1134/S107036321007008X.

    Article  Google Scholar 

  16. I. S. Nizamov, L. A. Al’metkina, G. T. Gabdullina, R. R. Shamilov, A. V. Sofronov, L. E. Nikitina, S. A. Lisovskaya, N. I. Glushko, R. A. Cherkasov, Russ. Chem. Bull., 2012, 61, 2370; DOI: https://doi.org/10.1007/s11172-012-0336-7.

    Article  CAS  Google Scholar 

  17. O. N. Grebyonkina, O. M. Lezina, E. S. Izmest’ev, D. V. Sudarikov, S. V. Pestova, S. A. Rubtsova, A. V. Kutchin, Russ. J. Org. Chem., 2017, 53, 860; DOI: https://doi.org/10.1134/S1070428017060082.

    Article  CAS  Google Scholar 

  18. D. V. Sudarikov, Yu. V. Krymskaya, N. O. Il’chenko, P. A. Slepukhin, S. A. Rubtsova, A. V. Kutchin, Russ. Chem. Bull., 2018, 67, 731; DOI: https://doi.org/10.1007/s11172-018-2130-7.

    Article  CAS  Google Scholar 

  19. N. O. Ilchenko, D. V. Sudarikov, R. V. Rumyantcev, D. R. Baidamshina, N. D. Zakarova, M. N. Yahia, A. R. Kayumov, A. V. Kutchin, S. A. Rubtsova, Antibiotics, 2022, 11, 1548; DOI: https://doi.org/10.3390/antibiotics11111548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D. V. Sudarikov, Y. V. Gyrdymova, A. V. Borisov, J. M. Lukiyanova, R. V. Rumyantcev, O. G. Shevchenko, D. R. Baidamshina, N. D. Zakarova, A. R. Kayumov, E. O. Sinegubova, A. S. Volobueva, V. V. Zarubaev, S. A. Rubtsova, Molecules, 2022, 27, 5101; DOI: https://doi.org/10.3390/molecules27165101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. E. Nikitina, V. A. Startseva, I. A. Vakulenko, I. M. Khismatulina, S. A. Lisovskaya, N. P. Glushko, R. S. Fassakhov, Pharm. Chem. J., 2009, 43, 251; DOI: https://doi.org/10.1007/s11094-009-0282-3.

    Article  CAS  Google Scholar 

  22. L. E. Nikitina, V. A. Startseva, L. Yu. Dorofeeva, N. P. Artemova, I. V. Kuznetsov, S. A. Lisovskaya, N. P. Glushko, Chem. Nat. Compd., 2010, 46, 28; DOI: https://doi.org/10.1007/s10600-010-9517-5.

    Article  CAS  Google Scholar 

  23. J. Sikkema, J. A. de Bont, B. Poolman, Microbiol. Rev., 1995, 59, 201; DOI: https://doi.org/10.1128/mr.59.2.201-222.1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Uribe, A. Pena, J. Chem. Ecol., 1990, 16, 1399; DOI: https://doi.org/10.1007/BF01021035.

    Article  CAS  PubMed  Google Scholar 

  25. L. Šturm, N. Poklar Ulrih, in Advances in Biomembranes and Lipid Self-Assembly, Elsevier, Amsterdam, 2020, Vol. 32, p. 25; DOI: https://doi.org/10.1016/bs.abl.2020.04.003.

    Google Scholar 

  26. J. O. e Nogueira, G. A. Campolina, L. R. Batista, E. Alves, A. R. S. Caetano, R. M. Brandào, D. L. Nelson, M. das G. Cardoso, FEMS Microbiol. Lett., 2021, 368, fnab052; DOI: https://doi.org/10.1093/femsle/fnab052.

    Article  CAS  Google Scholar 

  27. S.-K. Yang, K. Yusoff, M. Ajat, W.-S. Yap, S.-H. E. Lim, K.-S. Lai, J. Pharm. Anal., 2021, 11, 210; DOI: https://doi.org/10.1016/j.jpha.2020.05.014.

    Article  PubMed  Google Scholar 

  28. L. E. Nikitina, N. P. Artemova, V. A. Startseva, I. V. Fedyunina, V. V. Klochkov, Chem. Nat. Compd., 2017, 53, 811; DOI: https://doi.org/10.1007/s10600-017-2131-z.

    Article  CAS  Google Scholar 

  29. S. A. Mendanha, S. S. Moura, J. L. V. Anjos, M. C. Valadares, A. Alonso, Toxicol. in vitro, 2013, 27, 323; DOI: https://doi.org/10.1016/j.tiv.2012.08.022.

    Article  CAS  PubMed  Google Scholar 

  30. D. V. Sudarikov, Y. V. Krymskaya, O. G. Shevchenko, P. A. Slepukhin, S. A. Rubtsova, A. V. Kutchin, Chem. Biodivers., 2019, 16, e1900413; DOI: https://doi.org/10.1002/cbdv.201900413.

    Article  CAS  PubMed  Google Scholar 

  31. I. A. Dvornikova, E. V. Buravlev, O. G. Shevchenko, I. Yu. Chukicheva, A. V. Kutchin, Russ. Chem. Bull., 2021, 70, 2185; DOI: https://doi.org/10.1007/s11172-021-3330-0.

    Article  CAS  Google Scholar 

  32. E. S. Izmest’ev, D. V. Sudarikov, O. G. Shevchenko, S. A. Rubtsova, A. V. Kutchin, Russ. J. Bioorg. Chem., 2015, 41, 77; DOI: https://doi.org/10.1134/S1068162014050070.

    Article  Google Scholar 

  33. A. G. Guimarães, J. S. S. Quintans, L. J. Quintans-Júnior, Phytother. Res., 2013, 27, 1; DOI: https://doi.org/10.1002/ptr.4686.

    Article  PubMed  Google Scholar 

  34. I. Il’ina, E. Morozova, D. Korchagina, K. Volcho, T. Tolstikova, N. Salakhutdinov, Lett. Drug Des. Discov., 2019, 17, 68; DOI: https://doi.org/10.2174/1570180816666181114131220.

    Article  Google Scholar 

  35. I. V. Il’ina, D. V. Korchagina, E. A. Morozova, T. G. Tolstikova, K. P. Volcho, N. F. Salakhutdinov, Russ. Chem. Bull., 2022, 71, 2482; DOI: https://doi.org/10.1007/s11172-022-3677-x.

    Article  Google Scholar 

  36. E. S. Shchegravina, S. D. Usova, D. S. Baev, E. S. Mozhaitsev, D. N. Shcherbakov, S. V. Belenkaya, E. A. Volosnikova, V. Yu. Chirkova, E. A. Sharlaeva, E. V. Svirshchevskaya, I. P. Fonareva, A. R. Sitdikova, N. F. Salakhutdinov, O. I. Yarovaya, A. Yu. Fedorov, Russ. Chem. Bull., 2023, 72, 248; DOI: https://doi.org/10.1007/s11172-023-3730-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. B. I. M. Silva, E. A. Nascimento, C. J. Silva, T. G. Silva, J. S. Aguiar, Mol. Biol. Rep., 2021, 48, 5775; DOI: https://doi.org/10.1007/s11033-021-06578-5.

    Article  CAS  PubMed  Google Scholar 

  38. T. Gonda, P. Bérdi, I. Zupkó, F. Fülöp, Z. Szakonyi, Int. J. Mol. Sci., 2017, 19, 81; DOI: https://doi.org/10.3390/ijms19010081.

    Article  PubMed  PubMed Central  Google Scholar 

  39. M. Zielińska-Błajet, J. Feder-Kubis, Int. J. Mol. Sci., 2020, 21, 7078; DOI: https://doi.org/10.3390/ijms21197078.

    Article  PubMed  PubMed Central  Google Scholar 

  40. I. Yu. Chukicheva, E. V. Buravlev, I. A. Dvornikova, I. V. Fedorova, V. V. Zarubaev, A. V. Slita, Ya. L. Esaulkova, A. V. Kutchin, Russ. Chem. Bull., 2022, 71, 2473; DOI: https://doi.org/10.1007/s11172-022-3676-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O. I. Yarovaya, N. F. Salakhutdinov, Russ. Chem. Rev., 2021, 90, 488; DOI: https://doi.org/10.1070/RCR4969.

    Article  ADS  Google Scholar 

  42. B. M. Johnson, Y.-Z. Shu, X. Zhuo, N. A. Meanwell, J. Med. Chem., 2020, 63, 6315; DOI: https://doi.org/10.1021/acs.jmedchem.9b01877.

    Article  CAS  PubMed  Google Scholar 

  43. N. A. Meanwell, J. Med. Chem., 2011, 54, 2529; DOI: https://doi.org/10.1021/jm1013693.

    Article  CAS  PubMed  Google Scholar 

  44. C. Isanbor, D. O’Hagan, J. Fluor. Chem., 2006, 127, 303; DOI: https://doi.org/10.1016/j.jfluchem.2006.01.011.

    Article  CAS  Google Scholar 

  45. W. K. Hagmann, J. Med. Chem., 2008, 51, 4359; DOI: https://doi.org/10.1021/jm800219f.

    Article  CAS  PubMed  Google Scholar 

  46. Z. Pakulski, A. Zamojski, Tetrahedron: Asymmetry, 1995, 6, 111; DOI: https://doi.org/10.1016/0957-4166(94)00365-I.

    Article  CAS  Google Scholar 

  47. J. McCann, B. N. Ames, Ann. N. Y. Acad. Sci., 1976, 271, 5; DOI: https://doi.org/10.1111/j.1749-6632.1976.tb23086.x.

    Article  ADS  CAS  PubMed  Google Scholar 

  48. S. V. Pestova, E. S. Izmest’ev, O. G. Shevchenko, S. A. Rubtsova, A. V. Kutchin, Russ. Chem. Bull., 2015, 64, 723; DOI: https://doi.org/10.1007/s11172-015-0926-2.

    Article  CAS  Google Scholar 

  49. E. S. Izmest’ev, D. V. Sudarikov, S. A. Rubtsova, P. A. Slepukhin, A. V. Kutchin, Russ. J. Org. Chem., 2012, 48, 184; DOI: https://doi.org/10.1134/S1070428012020066.

    Article  Google Scholar 

  50. F. Martínez-Ramos, M. E. Vargas-Díaz, L. Chacón-García, J. Tamariz, P. Joseph-Nathan, L. G. Zepeda, Tetrahedron: Asymmetry, 2001, 12, 3095; DOI: https://doi.org/10.1016/S0957-4166(01)00545-6.

    Article  Google Scholar 

  51. O. A. Banina, D. V. Sudarikov, Yu. V. Krymskaya, L. L. Frolova, A. V. Kutchin, Chem. Nat. Compd., 2015, 51, 261; DOI: https://doi.org/10.1007/s10600-015-1257-0.

    Article  CAS  Google Scholar 

  52. A. Banach, J. Ścianowski, P. Ozimek, Phosphorus Sulfur Silicon Relat. Elem., 2014, 189, 274; DOI: https://doi.org/10.1080/10426507.2013.819867.

    Article  CAS  Google Scholar 

  53. R. Leclercq, R. Cantón, D. F. J. Brown, C. G. Giske, P. Heisig, A. P. MacGowan, J. W. Mouton, P. Nordmann, A. C. Rodloff, G. M. Rossolini, C.-J. Soussy, M. Steinbakk, T. G. Winstanley, G. Kahlmeter, Clin. Microbiol. Infect., 2013, 19, 141; DOI: https://doi.org/10.1111/j.1469-0691.2011.03703.x.

    Article  CAS  PubMed  Google Scholar 

  54. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast: Approved Standard, 3d ed., Ed. J. H. Rex, Clinical and Laboratory Standards Institute, CLSI: Wayne, Pa, 2008.

    Google Scholar 

  55. T. Mosmann, J. Immunol. Methods, 1983, 65, 55; DOI: https://doi.org/10.1016/0022-1759(83)90303-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (Project No. 21-13-00245) and carried out using the equipment of the Center of Collective Usage (CCU) “Chemistry”, Institute of Chemistry of Komi Science Center of the Ural Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Sudarikov.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to Academician of the Russian Academy of Sciences M. P. Egorov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii auk. Seriya Khimicheskaya, Vol. 73, No. 2, pp. 449–57, February, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudarikov, D.V., Chashchina, E.V., Kolesnikova, A.I. et al. Synthesis and antimicrobial activity of new thiomonoterpene carboxylic acids. Russ Chem Bull 73, 449–457 (2024). https://doi.org/10.1007/s11172-024-4152-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4152-7

Key words

Navigation