Skip to main content
Log in

Physicochemical characteristics and antiproliferative activity of a water-soluble nanoformulation of the PtIV complex with a lonidamine-based ligand

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Water-soluble nanoformulation of a hydrophobic anticancer PtIV complex with a lonidamine-based ligand has been developed. Biodegradable nanocarriers (13 nm) obtained from poly(l-lactide-block-polyethylene glycol) star-shaped block copolymers were used to create the formulation. The loading of the active agent into nanoparticles was up to 3.7 wt.%, and the loading efficiency was up to 68%. It was shown that solubilization of the anticancer complex into polymeric nanoparticles did not lead to a significant decrease in its cytotoxicity. As the number of arms in the star-shaped block copolymers increased, the selectivity of the nanoformulations towards cancer cells tended to increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A.-M. Florea, D. Büsselberg, Cancers, 2011, 3, 1351; DOI: https://doi.org/10.3390/cancers3011351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. E. J. Anthony, E. M. Bolitho, H. E. Bridgewater, O. W. L. Carter, J. M. Donnelly, C. Imberti, E. C. Lant, F. Lermyte, R. J. Needham, M. Palau, P. J. Sadler, H. Shi, F.-X. Wang, W.-Y. Zhang, Z. Zhang, Chem. Sci., 2020, 11, 12888; DOI: https://doi.org/10.1039/D0SC04082G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. P. Orlov, T. P. Trofimova, M. A. Orlova, Russ. Chem. Bull., 2022, 71; 2365; DOI: https://doi.org/10.1007/s11172-022-3429-y.

    Article  Google Scholar 

  4. T. Boulikas, Expert Opin. Invest. Drugs, 2009, 18, 1197; DOI: https://doi.org/10.1517/13543780903114168.

    Article  CAS  Google Scholar 

  5. J. J. Wilson, S. J. Lippard, Chem. Rev., 2014, 114, 4470; DOI: https://doi.org/10.1021/cr4004314.

    Article  CAS  PubMed  Google Scholar 

  6. R. G. Kenny, C. J. Marmion, Chem. Rev., 2019, 119, 1058; DOI: https://doi.org/10.1021/acs.chemrev.8b00271.

    Article  CAS  PubMed  Google Scholar 

  7. P. Starha, Coord. Chem. Rev., 2021, 431, 213690; DOI: https://doi.org/10.1016/j.ccr.2020.213690.

    Article  ADS  CAS  Google Scholar 

  8. W. H. Ang, I. Khalaila, C. S. Allardyce, L. Juillerat-Jeanneret, P. J. Dyson, J. Am. Chem. Soc., 2005, 127, 1382; DOI: https://doi.org/10.1021/ja0432618.

    Article  CAS  PubMed  Google Scholar 

  9. M. R. Gonchar, F. S. Ninin, E. R. Milaeva, A. A. Nazarov, Russ. Chem. Bull., 2022, 71, 962; DOI: https://doi.org/10.1007/s11172-022-3497-z.

    Article  CAS  Google Scholar 

  10. A. A. Nazarov, C. G. Hartinger, P. J. Dyson, J. Organomet. Chem., 2014, 751, 251; DOI: https://doi.org/10.1016/j.jorganchem.2013.09.016.

    Article  CAS  Google Scholar 

  11. I. A. Shutkov, A. A. Antonets, V. Y. Tyurin, E. R. Milaeva, A. A. Nazarov, Russ. J. Inorg. Chem., 2021, 66, 502; DOI: https://doi.org/10.1134/S0036023621030177.

    Article  CAS  Google Scholar 

  12. I. A. Shutkov, Y. N. Okulova, V. Y. Tyurin, E. V. Sokolova, D. A. Babkov, A. A. Spasov, Y. A. Gracheva, C. Schmidt, K. I. Kirsanov, A. A. Shtil, O. M. Redkozubova, E. F. Shevtsova, E. R. Milaeva, I. Ott, A. A. Nazarov, Int. J. Mol. Sci., 2021, 22, 13468; DOI: https://doi.org/10.3390/ijms222413468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. N. Nosova, L. S. Foteeva, I. V. Zenin, T. I. Fetisov, K. I. Kirsanov, M. G. Yakubovskaya, T. A. Antonenko, V. A. Tafeenko, L. A. Aslanov, A. A. Lobas, M. V. Gorshkov, M. Galanski, B. K. Keppler, A. R. Timerbaev, E. R. Milaeva, A. A. Nazarov, Eur. J. Inorg. Chem., 2016, 2017, 1785; DOI: https://doi.org/10.1002/ejic.201600857.

    Article  Google Scholar 

  14. J. Kasparkova, H. Kostrhunova, V. Novohradsky, L. Ma, G. Zhu, E. R. Milaeva, A. A. Shtill, R. Vinck, G. Gasser, V. Brabec, A. A. Nazarov, Metallomics, 2022, 14, mfac048; DOI: https://doi.org/10.1093/mtomcs/mfac048.

    Article  PubMed  Google Scholar 

  15. C. Englert, J. C. Brendel, T. C. Majdanski, T. Yildirim, S. Schubert, M. Gottschaldt, N. Windhab, U. S. Schubert, Prog. Polym. Sci., 2018, 87, 107; DOI: https://doi.org/10.1016/j.progpolymsci.2018.07.005.

    Article  CAS  Google Scholar 

  16. S. V. Kurmaz, N. V. Fadeeva, B. S. Fedorov, G. I. Kozub, V. A. Kurmaz, V. M. Ignat’ev, N. S. Emel’yanova, Russ. Chem. Bull., 2021, 70, 1832; DOI: https://doi.org/10.1007/s11172-021-3289-x.

    Article  CAS  Google Scholar 

  17. N. G. Sedush, Y. A. Kadina, E. V. Razuvaeva, A. A. Puchkov, E. M. Shirokova, V. I. Gomzyak, K. T. Kalinin, A. I. Kulebyakina, S. N. Chvalun, Nanobiotechnol. Rep., 2021, 16, 421; DOI: https://doi.org/10.1134/S2635167621040121.

    Article  CAS  Google Scholar 

  18. E. V. Razuvaeva, A. I. Kulebyakina, D. R. Streltsov, A. V. Bakirov, R. A. Kamyshinsky, N. M. Kuznetsov, S. N. Chvalun, E. V. Shtykova, Langmuir, 2018, 34, 15470; DOI: https://doi.org/10.1021/acs.langmuir.8b03379.

    Article  CAS  PubMed  Google Scholar 

  19. E. V. Razuvaeva, K. T. Kalinin, N. G. Sedush, A. A. Nazarov, D. S. Volkov, S. N. Chvalun, Mendeleev Commun., 2021, 31; DOI: https://doi.org/10.1016/j.mencom.2021.07.025.

  20. Y. A. Kadina, E. V. Razuvaeva, D. R. Streltsov, N. G. Sedush, E. V. Shtykova, A. I. Kulebyakina, A. A. Puchkov, D. S. Volkov, A. A. Nazarov, S. N. Chvalun, Molecules, 2021, 26, 602; DOI: https://doi.org/10.3390/molecules26030602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Burke, R. Donno, R. d’Arcy, S. Cartmell, N. Tirelli, Biomacromolecules, 2017, 18, 728; DOI: https://doi.org/10.1021/acs.biomac.6b01524.

    Article  CAS  PubMed  Google Scholar 

  22. A. A. Puchkov, N. G. Sedush, A. I. Buzin, T. N. Bozin, A. V. Bakirov, R. S. Borisov, S. N. Chvalun, Polymer, 2023, 264, 125573; DOI: https://doi.org/10.1016/j.polymer.2022.125573.

    Article  CAS  Google Scholar 

  23. S. Y. Park, B. R. Han, K. M. Na, D. K. Han, S. C. Kim, Macromolecules, 2003, 36, 4115; DOI: https://doi.org/10.1021/ma021639l.

    Article  ADS  CAS  Google Scholar 

  24. H. Fessi, F. Puisieux, J. P. Devissaguet, N. Ammoury, S. Benita, Int. J. Pharm., 1989, 55, R1; DOI: https://doi.org/10.1016/0378-5173(89)90281-0.

    Article  CAS  Google Scholar 

Download references

Funding

Synthesis of polymers, preparation of nano-formulations and the study of their antiproliferative activity was carried out under financial support of the Russian Science Foundation (Project No. 18-73-10079-P). The study of morphology and physicochemical characteristics of nanoparticles was carried out in the framework of a state task of the National Research Center “Kurchatov Institute” using equipment of the Resource Centers of this National Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Puchkov.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to Academician of the Russian Academy of Sciences M. P. Egorov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 1, pp. 213–220, January, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puchkov, A.A., Sedush, N.G., Nazarov, A.A. et al. Physicochemical characteristics and antiproliferative activity of a water-soluble nanoformulation of the PtIV complex with a lonidamine-based ligand. Russ Chem Bull 73, 213–220 (2024). https://doi.org/10.1007/s11172-024-4133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4133-x

Key words

Navigation