Skip to main content
Log in

Synthesis of new fluoro derivatives of o-carborane [3-F-7,8-C2B9H11], 3,6-F2-1,2-C2B10H10, and [6,6′-F2-3,3′-Co(1,2-C2B9H10)2]

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The 3,6-difluoro derivative of ortho-carborane 3,6-F2-1,2-C2B10H10 was obtained by a triple sequence of deboronation and BF-insertion reactions. 3-Fluoro and, especially, 3,6-difluoro derivatives of ortho-carborane were found to have an increased propensity to deboronation with elimination of the BF group under the action of even weak nucleophilic agents, which, apparently, is explained by a reduced electron density on the boron atoms bearing fluorine atoms. The 6,6′-difluoro derivative of cobalt bis(dicarbollide) [6,6′-F2-3,3′-Co(1,2-C2B9H10)2] was obtained from 3-fluoro-nido-carborane [3-F-7,8-C2B9H11]. The new fluoro derivatives of ortho-carborane were characterized by multinuclear NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. I. Zakharkin, V. N. Kalinin, B. A. Kvasov, E. I. Fedin, Bull. Acad. Sci. USSR. Div. Chem. Soi., 1968, 17, 2295; DOI: https://doi.org/10.1007/BF00904080.

    Article  Google Scholar 

  2. S. Kongpricha, H. Schroeder, Inorg. Chem., 1969, 8, 2449; DOI: https://doi.org/10.1021/IC50081A040.

    Article  CAS  Google Scholar 

  3. J. S. Roscoe, S. Kongpricha, S. Papetti, Inorg. Chem., 1970, 9, 1561; DOI: https://doi.org/10.1021/ic50088a052.

    Article  CAS  Google Scholar 

  4. H. Schroeder, T. L. Heying, J. R. Reiner, Inorg. Chem., 1963, 2, 1092; DOI: https://doi.org/10.1021/ic50010a003.

    Article  CAS  Google Scholar 

  5. H. Schroeder, J. R. Reiner, R. P. Alexander, T. L. Heying, Inorg. Chem., 1964, 3, 1464; DOI: https://doi.org/10.1021/ic50020a027.

    Article  CAS  Google Scholar 

  6. H. D. Smith, T. A. Knowles, H. Schroeder, Inorg. Chem., 1965, 4, 107; DOI: https://doi.org/10.1021/ic50023a024.

    Article  CAS  Google Scholar 

  7. L. I. Zakharkin, O. Yu. Okhlobystin, G. K. Semin, T. A. Babushkina, Bull. Acad. Sci. USSR. Div. Chem. Sci., 1965, 14, 1886; DOI: https://doi.org/10.1007/BF00850195.

    Article  Google Scholar 

  8. L. I. Zakharkin, V. I. Stanko, A. I. Klimova, Bull. Acad. Sci. USSR. Div. Chem. Sci., 1966, 15, 1882; DOI: https://doi.org/10.1007/BF01179696.

    Article  Google Scholar 

  9. L. I. Zakharkin, N. A. Ogorodnikova, J. Organomet. Chem., 1968, 12, 13; DOI: https://doi.org/10.1016/S0022-328X(00)90893-3.

    Article  CAS  Google Scholar 

  10. Ya. A. Ol’dekop, N. A. Maier, A. A. Erdman, Z. P. Zubreichuk, V. P. Prokopovich, J. Gen. Chem., 1980, 50, 471.

    Google Scholar 

  11. J. S. Andrews, J. Zayas, M. Jones, Inorg. Chem., 1985, 24, 3715; DOI: https://doi.org/10.1021/ic00216a053.

    Article  CAS  Google Scholar 

  12. J. Li, C. F. Logan, M. Jones, Inorg. Chem., 1991, 30, 4866; DOI: https://doi.org/10.1021/ic00025a037.

    Article  CAS  Google Scholar 

  13. Z. Zheng, W. Jiang, A. A. Zinn, C. B. Knobler, M. F. Hawthorne, Inorg. Chem., 1995, 34, 2095; DOI: https://doi.org/10.1021/ic00112a023.

    Article  CAS  Google Scholar 

  14. G. Barberà, F. Teixidor, C. Viñas, R. Sillanpää, R. Kivekäs, Eur. J. Inorg. Chem., 2003, 1511; DOI: https://doi.org/10.1002/ejic.200390195.

  15. G. Barberà, A. Vaca, F. Teixidor, R. Sillanpää, R. Kivekäs, C. Viñas, Inorg. Chem., 2008, 47, 7309; DOI: https://doi.org/10.1021/ic800362z.

    Article  PubMed  Google Scholar 

  16. A. V. Puga, F. Teixidor, R. Sillanpää, R. Kivekäs, C. Viñas, Chem. Eur. J., 2009, 15, 9764; DOI: https://doi.org/10.1002/chem.200900926.

    Article  CAS  PubMed  Google Scholar 

  17. H. Lyu, Y. Quan, Z. Xie, Chem. Eur. J., 2017, 23, 14866; DOI: https://doi.org/10.1002/chem.201703006.

    Article  CAS  PubMed  Google Scholar 

  18. K. Yu. Suponitsky, A. A. Anisimov, S. A. Anufriev, I. B. Sivaev, V. I. Bregadze, Crystals, 2020, 11, 396; DOI: https://doi.org/10.3390/cryst11040396.

    Article  Google Scholar 

  19. A. V. Shernyukov, G. E. Salnikov, D. A. Rudakov, A. M. Genaev, Inorg. Chem., 2021, 60, 3106; DOI: https://doi.org/10.1021/acs.inorgchem.0c03392.

    Article  CAS  PubMed  Google Scholar 

  20. O. B. Zhidkova, A. A. Druzina, S. A. Anufriev, K. Yu. Suponitsky, I. B. Sivaev, V. I. Bregadze, Molbank, 2022, 2022, M1347; DOI: https://doi.org/10.3390/M1347.

    Article  Google Scholar 

  21. W. Guo, C. Guo, Y.-N. Ma, X. Chen, Inorg. Chem., 2022, 61, 5326; DOI: https://doi.org/10.1021/acs.inorgchem.2c00074.

    Article  PubMed  Google Scholar 

  22. W. Lu, Y. Wu, Y.-N. Ma, F. Chen, X. Chen, Inorg. Chem., 2023, 62, 885; DOI: https://doi.org/10.1021/acs.inorgchem.2c03694.

    Article  CAS  PubMed  Google Scholar 

  23. K. Yu. Suponitsky, S. A. Anufriev, I. B. Sivaev, Molecules, 2023, 28, 875; DOI: https://doi.org/10.3390/molecules28020875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. T. Küppers, E. Bernhardt, R. Eujen, H. Willner, C. W. Lehmann, Angew. Chem., Int. Ed., 2007, 46, 6346; DOI: https://doi.org/10.1002/anie.200701136.

    Article  Google Scholar 

  25. S. V. Ivanov, D. V. Peryshkov, S. M. Miller, O. P. Anderson, A. K. Rappe, S. H. Strauss, J. Fluor. Chem., 2012, 143, 99; DOI: https://doi.org/10.1016/j.jnuchem.2012.02.001.

    Article  CAS  Google Scholar 

  26. M. Nava, I. V. Stoyanova, S. Cummings, E. S. Stoyanov, C. A. Reed, Angew. Chem., Int. Ed., 2014, 53, 1131; DOI: https://doi.org/10.1002/anie.201308586.

    Article  CAS  Google Scholar 

  27. E. S. Stoyanov, J. Phys. Chem. A, 2017, 121, 2918; DOI: https://doi.org/10.1021/acs.jpca.7b01203.

    Article  CAS  PubMed  Google Scholar 

  28. M. Malischewski, D. V. Peryshkov, E. V. Bukovsky, K. Seppelt, S. H. Strauss, Inorg. Chem., 2016, 55, 12254; DOI: https://doi.org/10.1021/acs.inorgchem.6b01980.

    Article  CAS  PubMed  Google Scholar 

  29. D. V. Peryshkov, S. H. Strauss, Inorg. Chem., 2017, 56, 4072; DOI: https://doi.org/10.1021/acs.inorgchem.7b00051.

    Article  CAS  PubMed  Google Scholar 

  30. M. Malischewski, E. V. Bukovsky, S. H. Strauss, K. Seppelt, J. Fluor. Chem., 2018, 212, 107; DOI: https://doi.org/10.1016/j.jnuchem.2018.04.010.

    Article  CAS  Google Scholar 

  31. V. I. Bregadze, A. Ya. Usyatinskii, N. N. Godovikov, Izv. AN. USSR. Ser. Khim., 1979, 28, 2836 (in Russian).

    Google Scholar 

  32. V. V. Grushin, T. M. Shcherbina, T. P. Tolstaya, J. Organomet. Chem., 1985, 292, 105; DOI: https://doi.org/10.1016/0022-328X(85)87326-5.

    Article  CAS  Google Scholar 

  33. V. N. Lebedev, E. V. Balagurova, A. V. Polyakov, A. I. Yanovsky, Yu. T. Struchkov, L. I. Zakharkin, J. Organomet. Chem., 1990, 385, 307; DOI: https://doi.org/10.1016/0022-328X(90)85001-F.

    Article  CAS  Google Scholar 

  34. K. A. Lyssenko, M. Yu. Antipin, V. N. Lebedev, Inorg. Chem., 1998, 37, 5834; DOI: https://doi.org/10.1021/ic9807644.

    Article  CAS  Google Scholar 

  35. Z. Qiu, Y. Quan, Z. Xie, J. Am. Chem. Soc., 2013, 135, 12192; DOI: https://doi.org/10.1021/ja405808t.

    Article  CAS  PubMed  Google Scholar 

  36. L. I. Zakharkin, V. N. Kalinin, V. V. Gedymin, J. Organomet. Chem., 1969, 16, 371; DOI: https://doi.org/10.1016/S0022-328X(00)89762-4.

    Article  CAS  Google Scholar 

  37. D. Zhao, Z. Xie, Chem. Sci., 2016, 7, 5635; DOI: https://doi.org/10.1039/C6SC01566B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A. V. Shmal’ko, S. A. Anufriev, K. Yu. Suponitsky, I. B. Sivaev, Inorganics, 2022, 10, 207; DOI: https://doi.org/10.3390/inorganics10110207.

    Article  Google Scholar 

  39. H. Yamazaki, K. Ohta, Y. Endo, Tetrahedron Lett., 2005, 46, 3119; DOI: https://doi.org/10.1016/j.tetlet.2005.02.163.

    Article  CAS  Google Scholar 

  40. F. Teixidor, G. Barberà, C. Viñas, R. Sillanpää, R. Kivekäs, Inorg. Chem., 2006, 45, 3496; DOI: https://doi.org/10.1021/ic060124y.

    Article  CAS  PubMed  Google Scholar 

  41. S. A. Anufriev, S. V. Timofeev, O. B. Zhidkova, K. Yu. Suponitsky, I. B. Sivaev, Crystals, 2022, 12, 1251; DOI: https://doi.org/10.3390/cryst12091251.

    Article  CAS  Google Scholar 

  42. G. Barbera, C. Viñas, F. Teixidor, A.J. Welch, G. M. Rosair, J. Organomet. Chem., 2002, 657, 217; DOI: https://doi.org/10.3390/cryst12091251.

    Article  CAS  Google Scholar 

  43. V. N. Lebedev, E. V. Balagurova, L. L. Zakharkin, Russ. Chem. Bull., 1995, 44, 1102; DOI: https://doi.org/10.1007/BF00707062.

    Article  Google Scholar 

  44. A. V. Shmal’ko, S. A. Anufriev, A. A. Anisimov, M. Yu. Stogniy, I. B. Sivaev, V. I. Bregadze, Russ. Chem. Bull., 2019, 68, 1239; DOI: https://doi.org/10.1007/s11172-019-2547-7.

    Article  Google Scholar 

  45. I. B. Sivaev, S. A. Anufriev, A. V. Shmalko, Inorg. Chim. Acta, 2023, 547, 121339; DOI: https://doi.org/10.1016/j.ica.2022.121339.

    Article  CAS  Google Scholar 

  46. V. N. Lebedev, M. V. Galakhov, V. I. Bakhmutov, L. I. Zakharkin, Organomet. Chem. USSR, 1989, 2, 493.

    Google Scholar 

  47. A. N. Gashti, J. C. Huffman, A. Edwards, G. Szekeley, A. R. Siedle, J. A. Karty, J. P. Reilly, L. J. Todd, J. Organomet. Chem., 2000, 614–615, 120; DOI: https://doi.org/10.1016/S0022-328X(00)00625-2.

    Article  Google Scholar 

  48. I. B. Sivaev, I. D. Kosenko, Russ. Chem. Bull., 2021, 70, 753; DOI: https://doi.org/10.1007/s11172-021-3146-y.

    Article  CAS  Google Scholar 

  49. M. F. Hawthorne, D. C. Young, P. M. Garrett, D. A. Owen, S. G. Schwerin, F. N. Tebbe, P. A. Wegner, J. Am. Chem. Soc., 1968, 90, 862; DOI: https://doi.org/10.1021/ja01006a006.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-1027 dated 04.10.2021). NMR spectra were obtained using scientific equipment of the Center for Molecular Structure Studies at the A. N. Nesmeyanov Institute of Organoelement Compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Sivaev.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to Academician of the Russian Academy of Sciences M. P. Egorov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 1, pp. 0146–0152, January, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmalko, A.V., Anufriev, S.A., Timofeev, S.V. et al. Synthesis of new fluoro derivatives of o-carborane [3-F-7,8-C2B9H11], 3,6-F2-1,2-C2B10H10, and [6,6′-F2-3,3′-Co(1,2-C2B9H10)2]. Russ Chem Bull 73, 146–152 (2024). https://doi.org/10.1007/s11172-024-4126-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4126-9

Key words

Navigation