Skip to main content
Log in

Donor-acceptor complexes of main group 14 elements with α-diimines and catecholate ligands

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A series of new six-coordinate silicon, germanium, and tin complexes based on 3,6-di-tert-butyl-o-benzoquinone with N-donor ligands (1,10-phenanthroline and 2,2′-bipyridine) were synthesized and structurally and spectrally characterized. According to the results of electrochemical measurements, the complexes can be oxidized or reduced (they are redox amphoteric) due to the presence of redox-active ligands. The electronic absorption spectra of the compounds show absorption in the 450–500 nm range, which accounts for their intense color. This absorption band is blue-shifted with increasing solvent polarity. The combination of the spectral characteristics and results of quantum chemical calculations indicates that the synthesized silicon, germanium, and tin complexes can be considered as donor-acceptor chromophores with photoinduced ligand-to-ligand charge transfer between the diimine moiety and catechols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. Hartmann, T. Thorwart, R. Muller, J. Thusek, J. Schwabedissen, A. Mix, J. H. Lamm, B. Neumann, N. W. Mitzel, L. Greb, J. Am. Chem. Soc., 2021, 143, 44, 18784; DOI: https://doi.org/10.1039/d1cc03452a.

    Article  Google Scholar 

  2. M. G. Chegerev, A. V. Piskunov, A. V. Maleeva, G. K. Fukin, G. A. Abakumov, Eur. J. Inorg. Chem., 2016, 23, 3813; DOI: https://doi.org/10.1002/ejic.201600501.

    Article  Google Scholar 

  3. A. V. Piskunov, A. V. Lado, E. V. Ilyakina, G. K. Fukin, E. V. Baranov, V. K. Cherkasov, G. A. Abakumov, J. Organomet. Chem., 2008, 693, 128; DOI: https://doi.org/10.1016/j.jorganchem.2007.10.029.

    Article  CAS  Google Scholar 

  4. A. L. Liberman-Martin, D. S. Levine, W. Liu, R. G. Bergman, T. D. Tilley, Organometallics, 2016, 35, 1064; DOI: https://doi.org/10.1021/acs.organomet.5b01003.

    Article  CAS  Google Scholar 

  5. L. B. Vaganova, A. V. Maleeva, A. V. Piskunov, D. F. Grishin, Russ. Chem. Bull., 2011, 60, 1620; DOI: https://doi.org/10.1007/s11172-011-0242-4.

    Article  CAS  Google Scholar 

  6. L. B. Vaganova, E. V. Kolyakina, A. V. Lado, A. V. Piskunov, D. F. Grishin, Polym. Sci., Ser. B, 2009, 51, 96; DOI: https://doi.org/10.1134/S156009040903004X.

    Article  Google Scholar 

  7. L. B. Vaganova, E. V. Kolyakina, A. V. Lado, A. V. Piskunov, D. F. Grishin, Vestn. Bashkir. Univ. Ser. Khim. [Bull Bashkir Univ., Ser. Chem.], 2009, 14, 369 (in Russian).

    Google Scholar 

  8. L. B. Vaganova, E. V. Kolyakina, A. V. Lado, A. V. Piskunov, V. K. Cherkasov, D. F. Grishin, Polym. Sci., Ser. A, 2008, 50, 159; DOI: https://doi.org/10.1007/s11498-008-2009-8.

    Google Scholar 

  9. E. V. Kolyakina, L. B. Vaganova, A. V. Lado, A. V. Piskunov, V. K. Cherkasov, D. F. Grishin, Russ. Chem. Bull., 2007, 56, 1363; DOI: https://doi.org/10.1007/s11172-007-0208-8.

    Article  CAS  Google Scholar 

  10. T. N. Kocherova, N. O. Druzhkov, A. S. Shavyrin, M. V. Arsenyev, E. V. Baranov, V. A. Kuropatov, V. K. Cherkasov, Russ. Chem. Bull., 2021, 70, 916; DOI: https://doi.org/10.1007/s11172-021-3167-6.

    Article  CAS  Google Scholar 

  11. D. Hartmann, M. Schadler, L. Greb, Chem. Sci., 2019, 10, 7379; DOI: https://doi.org/10.1039/c9sc02167a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. N. Ansmann, D. Hartmann, S. Sailer, P. Erdmann, R. Maskey, M. Schorpp, L. Greb, Angew. Chem., Int. Ed., 2022, 61, e202203947; DOI: https://doi.org/10.1002/anie.202203947.

    Article  ADS  CAS  Google Scholar 

  13. D. Roth, H. Wadepohl, L. Greb, Angew. Chem., Int. Ed., 2020, 59, 20930; DOI: https://doi.org/10.1002/anie.202009736.

    Article  CAS  Google Scholar 

  14. R. Maskey, C. Bendel, J. Malzacher, L. Greb, Chem. Eur. J., 2020, 26, 17386; DOI: https://doi.org/10.1002/chem.202004712.

    Article  CAS  PubMed  Google Scholar 

  15. T. Thorwart, D. Hartmann, L. Greb, Chem. Eur. J., 2022, 28, e202202273; DOI: https://doi.org/10.1002/chem.202202273.

    Article  CAS  PubMed  Google Scholar 

  16. T. Thorwart, D. Roth, L. Greb, Chem. Eur. J., 2021, 27, 10422; DOI: https://doi.org/10.1002/chem.202101138.

    Article  CAS  PubMed  Google Scholar 

  17. D. Hartmann, S. Braner, L. Greb, Chem. Comm., 2021, 57, 8572; DOI: https://doi.org/10.1039/d1cc03452a.

    Article  CAS  PubMed  Google Scholar 

  18. N. Ansmann, T. Thorwart, L. Greb, Angew. Chem., Int. Ed., 2022, 61, e202210132; DOI: https://doi.org/10.1002/anie.202210132.

    Article  CAS  Google Scholar 

  19. A. Acosta, J. I. Zink, Inorg. Chem., 2000, 39, 427; DOI: https://doi.org/10.1021/ic9908773.

    Article  CAS  PubMed  Google Scholar 

  20. G. E. Coates, S. I. E. Green, J. Chem. Soc., 1962, 3340; DOI https://doi.org/10.1039/JR9620003340.

  21. R. Benedix, H. Hennig, H. Kunkely, A. Vogler, Chem. Phys. Lett., 1990, 175, 5, 483.

    Article  Google Scholar 

  22. S. D. Cummings, R. Eisenberg, J. Am. Chem. Soc., 1996, 118, 1949; DOI: https://doi.org/10.1021/ja951345y.

    Article  CAS  Google Scholar 

  23. P. J. Chirik, K. Wieghardt, Science, 2010, 327, 794; DOI: https://doi.org/10.1126/science.1183281.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. M. O. BaniKhaled, J. D. Becker, M. Koppang, H. Sun, Cryst. Growth. Des., 2016, 16, 1869; DOI: https://doi.org/10.1021/acs.cgd.5b01291.

    Article  CAS  Google Scholar 

  25. M. Brasse, J. Cámpora, M. Davies, E. Teuma, P. Palma, E. Álvarez, E. Sanz, M. L. Reyes, Adv. Synth. Catal., 2007, 349, 2111; DOI: https://doi.org/10.1002/adsc.200700196.

    Article  CAS  Google Scholar 

  26. P. Ghosh, A. Begum, D. Herebian, E. Bothe, K. Hildenbrand, T. Weyhermüller, K. Wieghardt, Angew. Chem., Int. Ed., 2003, 42, 563; DOI: https://doi.org/10.1002/anie.200390162.

    Article  CAS  Google Scholar 

  27. S. Yamada, T. Matsumoto, H. C. Chang, Chem. Eur. J., 2019, 25, 8268; DOI: https://doi.org/10.1002/chem.201900172.

    Article  CAS  PubMed  Google Scholar 

  28. H. Yang, Y. Zhao, B. Liu, J. H. Su, I. L. Fedushkin, B. Wu, X. J. Yang, Dalton Trans., 2017, 46, 7857; DOI: https://doi.org/10.1039/c7dt00455a.

    Article  CAS  PubMed  Google Scholar 

  29. J. Bachmann, D. G. Nocera, J. Am. Chem. Soc., 2004, 126, 2829; DOI: https://doi.org/10.1021/ja039617h.

    Article  CAS  PubMed  Google Scholar 

  30. W. W. Kramer, L. A. Cameron, R. A. Zarkesh, J. W. Ziller, A. F. Heyduk, Inorg. Chem., 2014, 53, 8825; DOI: https://doi.org/10.1021/ic5017214.

    Article  CAS  PubMed  Google Scholar 

  31. K. Heinze, S. Reinhardt, Chem. Eur. J., 2008, 14, 9482; DOI: https://doi.org/10.1002/chem.200801288.

    Article  CAS  PubMed  Google Scholar 

  32. R. Roy, P. Chattopadhyay, C. Sinha, Polyhedron, 1996, 15, 3361; DOI: https://doi.org/10.1016/0277-5387(96)00050-2.

    Article  CAS  Google Scholar 

  33. S. Reinhardt, K. Heinze, Z. Anorg. Allg. Chem., 2006, 632, 1465; DOI: https://doi.org/10.1016/0277-5387(96)00050-2.

    Article  CAS  Google Scholar 

  34. S. Archer, J. A. Weinstein, Coord. Chem. Rev., 2012, 256, 2530; DOI: https://doi.org/10.1016/j.ccr.2012.07.010.

    Article  CAS  Google Scholar 

  35. B. Bozic-Weber, E. C. Constable, C. E. Housecroft, Coord. Chem. Rev., 2013, 257, 3089; DOI: https://doi.org/10.1016/j.ccr.2013.05.019.

    Article  CAS  Google Scholar 

  36. P. Deplano, L. Pilia, D. Espa, M. L. Mercuri, A. Serpe, Coord. Chem. Rev., 2010, 254, 1434; DOI: https://doi.org/10.1016/j.ccr.2009.12.022.

    Article  CAS  Google Scholar 

  37. B. Garreau-de Bonneval, K. I. Moineau-Chane Ching, F. Alary, T.-T. Bui, L. Valade, Coord. Chem. Rev., 2010, 254, 1457; DOI: https://doi.org/10.1016/j.ccr.2010.02.019.

    Article  CAS  Google Scholar 

  38. P. A. Scattergood, P. Jesus, H. Adams, M. Delor, I. V. Sazanovich, H. D. Burrows, C. Serpa, J. A. Weinstein, Dalton Trans., 2015, 44, 11705; DOI: https://doi.org/10.1039/c4dt03466j.

    Article  CAS  PubMed  Google Scholar 

  39. L. A. Cameron, J. W. Ziller, A. F. Heyduk, Chem. Sci., 2016, 7, 1807; DOI: https://doi.org/10.1039/c5sc02703a.

    Article  CAS  PubMed  Google Scholar 

  40. R. M. Clarke, T. Jeen, S. Rigo, J. R. Thompson, L. G. Kaake, F. Thomas, T. Storr, Chem. Sci., 2018, 9, 1610; DOI: https://doi.org/10.1039/c7sc04537a.

    Article  CAS  PubMed  Google Scholar 

  41. S. Bauer, S. Záliš, J. Fiedler, M. R. Ringenberg, W. Kaim, Eur. J. Inorg. Chem., 2020, 25, 2435; DOI: https://doi.org/10.1002/ejic.202000257.

    Article  Google Scholar 

  42. J. Best, I. V. Sazanovich, H. Adams, R. D. Bennett, E. S. Davies, A. J. Meyer, M. Towrie, S. A. Tikhomirov, O. V. Bouganov, M. D. Ward, J. A. Weinstein, Inorg. Chem., 2010, 49, 10041; DOI: https://doi.org/10.1021/ic101344t.

    Article  CAS  PubMed  Google Scholar 

  43. N. Deibel, D. Schweinfurth, J. Fiedler, S. Zalis, B. Sarkar, Dalton Trans., 2011, 40, 9925; DOI: https://doi.org/10.1039/c1dt10856e.

    Article  CAS  PubMed  Google Scholar 

  44. S. L. Kokatam, P. Chaudhuri, T. Weyhermuller, K. Wieghardt, Dalton Trans., 2007, 373; DOI: https://doi.org/10.1039/b614745c.

  45. S. Roy, I. Hartenbach, B. Sarkar, Eur. J. Inorg. Chem., 2009, 17, 2553; DOI: https://doi.org/10.1002/ejic.200900007.

    Article  Google Scholar 

  46. K. Tahara, T. Kadowaki, J.-i. Kikuchi, Y. Ozawa, S. Yoshimoto, M. Abe, Bull. Chem. Soc. Jpn, 2018, 91, 1630; DOI: https://doi.org/10.1246/bcsj.20180187.

    Article  CAS  Google Scholar 

  47. J. Garcia-Canadas, A. P. Meacham, L. M. Peter, M. D. Ward, Angew. Chem., Int. Ed., 2003, 42, 3011; DOI: https://doi.org/10.1002/anie.200351338.

    Article  CAS  Google Scholar 

  48. M.-K. Tsai, J. Rochford, D. E. Polyansky, T. Wada, K. Tanaka, E. Fujita, J. T. Muckerman, Inorg. Chem., 2009, 48, 4372; DOI: https://doi.org/10.1021/ic900057y.

    Article  CAS  PubMed  Google Scholar 

  49. I. V. Ershova, A. V. Maleeva, R. R. Aysin, A. V. Cherkasov, A. V. Piskunov, Russ. Chem. Bull., 2023, 72, 193; DOI: https://doi.org/10.1007/s11172-023-3724-2.

    Article  CAS  Google Scholar 

  50. A. V. Maleeva, I. V. Ershova, O. Y. Trofimova, K. V. Arsenyeva, I. A. Yakushev, A. V. Piskunov, Mendeleev Commun., 2022, 32, 83; DOI: https://doi.org/10.1016/j.mencom.2022.01.027.

    Article  CAS  Google Scholar 

  51. A. V. Maleeva, O. Yu. Trofimova, I. A. Yakushev, R. R. Aysin, A. V. Piskunov, Russ. J. Coord. Chem., 2023, 49, 420; DOI: https://doi.org/10.1134/S1070328423600134.

    Article  CAS  Google Scholar 

  52. A. V. Maleeva, O. Yu. Trofimova, I. V. Ershova, K. V. Arsenyeva, K. I. Pashanova, I. A. Yakushev, A. V. Cherkasov, R. R. Aysin, A. V. Piskunov, Russ. Chem. Bull., 2022, 71, 1441; DOI: https://doi.org/10.1007/s11172-022-3550-y.

    Article  CAS  Google Scholar 

  53. A. V. Lado, A. V. Piskunov, I. V. Zhdanovich, G. K. Fukin, E. V. Baranov, Russ. J. Coord. Chem., 2008, 34, 251; DOI: https://doi.org/10.1134/S1070328408040027.

    Article  CAS  Google Scholar 

  54. A. V. Piskunov, A. V. Lado, G. K. Fukin, E. V. Baranov, L. G. Abakumova, V. K. Cherkasov, G. A. Abakumov, Heteroat. Chem., 2006, 17, 6, 481; DOI: https://doi.org/10.1002/hc.20271.

    Article  Google Scholar 

  55. A. V. Lado, A. V. Piskunov, V. K. Cherkasov, G. K. Fukin, G. A. Abakumov, Russ. J. Coord. Chem., 2006, 32, 173; DOI: https://doi.org/10.1134/s1070328406030031.

    Article  CAS  Google Scholar 

  56. H. Meyer, G. Nagorsen, Angew. Chem., Int. Ed., 1979, 18, 551; DOI: https://doi.org/10.1002/anie.197905511.

    Article  Google Scholar 

  57. T. A. Annan, B. R. McGarvey, A. Ozarowski, D. G. Tuck, R. K. Chadha, J. Chem. Soc., Dalton Trans., 1989, 439; DOI: https://doi.org/10.1039/DT9890000439.

  58. A. V. Lado, A. I. Poddel’sky, A. V. Piskunov, G. K. Fukin, E. V. Baranov, V. N. Ikorskii, V. K. Cherkasov, G. A. Abakumov, Inorg. Chim. Acta., 2005, 358, 4443; DOI: https://doi.org/10.1016/j.ica.2005.09.045.

    Article  CAS  Google Scholar 

  59. A. Asadi, C. Eaborn, M. S. Hill, P. B. Hitchcock, M. M. Meehan, J. D. Smith, Organometallics, 2002, 21, 2430; DOI: https://doi.org/10.1021/om020106y.

    Article  CAS  Google Scholar 

  60. E. N. Nikolaevskaya, E. A. Saverina, A. A. Starikova, A. Farhati, M. A. Kiskin, M. A. Syroeshkin, M. P. Egorov, V. V. Jouikov, Dalton Trans., 2018, 47, 17127; DOI: https://doi.org/10.1039/c8dt03397h.

    Article  CAS  PubMed  Google Scholar 

  61. A. F. Akbulatov, A. Y. Akyeva, P. G. Shangin, N. A. Emelianov, I. V. Krylova, M. O. Markova, L. D. Labutskaya, A. V. Mumyatov, E. I. Tuzharov, D. A. Bunin, L. A. Frolova, M. P. Egorov, M. A. Syroeshkin, P. A. Troshin, Membranes, 2023, 13, 439; DOI: https://doi.org/10.3390/membranes13040439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. P. G. Shangin, I. V. Krylova, A. V. Lalov, A. Y. Kozmenkova, E. A. Saverina, P. A. Buikin, A. A. Korlyukov, A. A. Starikova, E. N. Nikolaevskaya, M. P. Egorov, M. A. Syroeshkin, RSC Adv., 2021, 11, 21527; DOI: https://doi.org/10.1039/d1ra02691g.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. K.-H. Chen, Y.-H. Liu, C.-W. Chiu, Organometallics, 2020, 39, 4645; DOI: https://doi.org/10.1021/acs.organomet.0c00671.

    Article  CAS  Google Scholar 

  64. M. Glavinović, M. Krause, L. Yang, J. A. McLeod, L. Liu, K. M. Baines, T. Frišćić, J.-P. Lumb, Sci. Adv., 2017, 3, e1700149; DOI: https://doi.org/10.1126/sciadv.1700149.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  65. C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, G. C. Bazan, Adv. Mater., 2011, 23, 20, 2367; DOI: https://doi.org/10.1002/adma.201004554.

    Article  Google Scholar 

  66. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 1988, Weinheim, 534 p.

  67. D. D. Perrin, W. L. F. Armarego, D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 1980, 568 p.

    Google Scholar 

  68. G. K. Fukin, A. V. Cherkasov, M. P. Shurygina, N. O. Druzhkov, V. A. Kuropatov, S. A. Chesnokov, G. A. Abakumov, Struct. Chem., 2010, 21, 607; DOI: https://doi.org/10.1007/s11224-010-9590-1.

    Article  CAS  Google Scholar 

  69. Rigaku Oxford Diffraction, CrysAlisPro Software System, Ver. 1.171.42.72a. Rigaku Corporation, Wroclaw, Poland, 2022.

  70. Bruker. APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2016.

  71. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. G. M. Sheldrick, Acta Crystallogr., Sect. C, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  ADS  Google Scholar 

  73. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 2, 339; DOI: https://doi.org/10.1107/s0021889808042726.

    Article  Google Scholar 

  74. G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Gaussian 09 (Revision E.01), Wallingford CT, 2013.

  75. B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model., 2019, 59, 11, 4814; DOI: https://doi.org/10.1021/acs.jcim.9b00725.

    Article  Google Scholar 

  76. A. D. Laurent, D. Jacquemin, Int. J. Quant. Chem., 2013, 113, 2019; DOI: https://doi.org/10.1002/qua.24438.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed using the equipment of the Center for Collective Use, Analytical Center of the G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, supported by the grant “Provision of the Development of Material and Technical Infrastructure of Centers for Collective Use of Research Equipment” (unique identifier RF-2296.61321X0017, Agreement No. 075-15-2021-670) and the Center for Collective Use of Physical Investigation Methods, N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

The study was financially supported by the Russian Science Foundation (Project No. 22-13-00351).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Piskunov.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to Academician of the Russian Academy of Sciences M. P. Egorov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 1, pp. 117–130, January, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsenyeva, K.V., Klimashevskaya, A.V., Arsenyev, M.V. et al. Donor-acceptor complexes of main group 14 elements with α-diimines and catecholate ligands. Russ Chem Bull 73, 117–130 (2024). https://doi.org/10.1007/s11172-024-4123-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4123-z

Key words

Navigation