Skip to main content
Log in

Features of the Baeyer—Villiger reaction in the case of a complex variously functionalized substrate

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reactions of (3S,4RS)-1,3-dideoxy-3-[(2Z)-4-methoxy-3-methyl-4-oxobut-2-en1-yl]-4-C-methyl-4,5-O-(1-methylethylidene)pent-2-ulose with MCPBA and trifluoroperacetic acid were studied. It was shown that 60% MCPBA in CH2Cl2 at room temperature caused isomerization in the acetonide fragment of this compound, while no expected Baeyer—Villiger (B—V) reaction was observed at the methyl ketone. In the MCPBA—AcONa system, the epoxidation of the activated double bond followed the conjugate addition—elimination scheme. The oxidation with trifluoroperacetic acid occurred at the methyl ketone moiety with subsequent decomposition of the dioxolane protecting group and intramolecular lactonization. The introduction into the B—V reaction of the corresponding aldehyde-containing partner instead of the methyl ketone-containing ulose led to an abnormal product of furanization with the loss of the chiral center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. F. Valeev, G. R. Sunagatullina, V. V. Loza, A. N. Lobov, M. S. Miftakhov, Russ. J. Org. Chem., 2021, 57, 889–904; DOI: https://doi.org/10.1134/S1070428021060038.

    Article  CAS  Google Scholar 

  2. N. K. Selezneva, G. R. Sunagatullina, Z. R. Valiullina, M. S. Miftakhov, Russ. J. Org. Chem., 2022, 58, 548–550; DOI: https://doi.org/10.31857/S0514749222050135.

    Google Scholar 

  3. R. F. Valeev, R. F. Bikzhanov, N. Z. Yagafarov, M. S. Miftakhov, Tetrahedron, 2012, 68, 6868–6872; DOI: https://doi.org/10.1016/j.tet.2012.06.020.

    Article  CAS  Google Scholar 

  4. M. Majdecki, A. Tyszka-Gumkowska, J. Jurczak, Org. Lett., 2020, 22, 8687–8691; DOI: https://doi.org/10.1021/acs.orglett.0c03272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Murphy, G. Dubois, T. D. P. Stack, J. Am. Chem. Soc., 2003, 125, 5250–5251; DOI: https://doi.org/10.1021/ja029962r.

    Article  CAS  PubMed  Google Scholar 

  6. M. Anastasia, P. Allevi, P. Ciuffreda, A. Fiecchi, A. Scala, J. Org. Chem., 1985, 50, 321–325; DOI: https://doi.org/10.1021/jo00203a007.

    Article  CAS  Google Scholar 

  7. M. S. Cooper, H. Heaney, A. J. Newbold, W. R. Sanderson, Synlett, 1990, 9, 533–535; DOI: https://doi.org/10.1055/s-1990-21156.

    Article  Google Scholar 

  8. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.1, Gaussian, Inc.: Wallingford CT, 2009.

    Google Scholar 

  9. A. D. Becke, J. Chem. Phys., 1993, 98, 5648; DOI: https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  10. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785; DOI: https://doi.org/10.1103/PhysRevB.37.785.

    Article  CAS  Google Scholar 

  11. W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys., 1972, 56, 2257; DOI: https://doi.org/10.1063/1.1677527.

    Article  CAS  Google Scholar 

  12. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215; DOI: https://doi.org/10.1007/s00214-007-0310-x.

    Article  CAS  Google Scholar 

  13. A. J. H. Wachters, J. Chem. Phys., 1970, 52, 1033; DOI: https://doi.org/10.1063/1.1673095.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The spectroscopic part of the study and theoretical calculations were carried out using the equipment of the Center for Collective Use “Chemistry” of the Ufa Institute of Chemistry, Ural Federal Research Center of the Russian Academy of Sciences.

Funding

The work was carried out in the framework of the Russian state assignment No. 122031400261-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Sunagatullina.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to the memory of Academician of the Russian Academy of Sciences G. A. Tolstikov (1933–2013).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 10, pp. 2392–2398, October, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunagatullina, G.R., Khursan, S.L., Lobov, A.N. et al. Features of the Baeyer—Villiger reaction in the case of a complex variously functionalized substrate. Russ Chem Bull 72, 2392–2398 (2023). https://doi.org/10.1007/s11172-023-4038-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4038-0

Key words

Navigation