Skip to main content
Log in

Electrolytes based on sulfone mixtures for lithium and lithium-ion batteries: the low-temperature properties

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The physicochemical properties and the phase state of sulfolane (1)—ethyl isobutyl sulfone (2) mixtures and 1 M LiClO4 solutions based on these mixtures were studied in the temperature range from 50 to −70 °C. The mixtures form an eutectic with a temperature of −31.2 °C. The phase diagram of the binary system 1–2 exhibits two solidus lines owing to the ability of sulfolane to exist in three phase states (crystalline, mesomorphic, and liquid). Solutions of LiClO4 in the mixtures of sulfones 1 and 2 containing more than 15 mol.% of 2 are in the liquid state down to −70 °C. The specific conductivity and viscosity isotherms of the 1 M LiClO4 solutions in the mixtures of sulfones 1 and 2, depending on the composition of the electrolyte solvent, are nonlinear, namely, specific conductivity is lower while the viscosity is higher than the corresponding additive values. The maximum degree of electrolytic dissociation of LiClO4 is achieved in the sulfone mixtures containing about 15% mol. of sulfone 2. Electrolyte solutions based on the mixtures of sulfones 1 and 2 containing more than 15 mol.% of 2 can be used as electrolytes for low-temperature lithium-ion and post-lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature

  1. G. Zubia, R. Dufo-Lópeza, M. Carvalhob, G. Pasaogluc, Energy Rev., 2018, 89, 292; DOI: https://doi.org/10.1016/j.rser.2018.03.002.

    Google Scholar 

  2. K. M. Abraham, J. Phys. Chem. Lett., 2015, 6, 830; DOI: https://doi.org/10.1021/jz5026273.

    Article  PubMed  CAS  Google Scholar 

  3. G. R. Baymuratova, K. G. Khatmullina, G. Z. Tulibaeva, I. K. Yakushchenko, P. A. Troshin, O. V. Yarmolenko, Russ. Chem. Bull., 2022, 71, 2108; DOI: https://doi.org/10.1007/s11172-022-3634-8.

    Article  Google Scholar 

  4. T. R. Jow, K. Xu, O. Borodin, M. Ue, Electrolytes for Lithium and Lithium-Ion Batteries, Modern Aspects of Electrochemistry, Vol. 58, Springer Science+Business Media, New York, 2014, 476 pp; DOI: https://doi.org/10.1007/978-1-4939-0302-3Springer.

    Book  Google Scholar 

  5. J. Xia, R. Petibon, D. Xiong, L. Ma, J. R. Dahn, J. Power Sources, 2016, 328, 124; DOI: https://doi.org/10.1016/j.jpowsour.2016.08.015.

    Article  CAS  Google Scholar 

  6. D. Hubble, D. E. Brown, Y. Zhao, C. Fang, J. Lau, B. D. McCloskey, G. Liu, Energy Environ. Sci., 2022, 15, 550; DOI: https://doi.org/10.1039/d1ee01789f.

    Article  CAS  Google Scholar 

  7. T. L. Kulova, A. M. Skundin, Int. J. Electrochem. Sci., 2020, 15, 8638; DOI: https://doi.org/10.20964/2020.09.50.

    Article  Google Scholar 

  8. A. Hofmann, M. Schulz, S. Indris, R. Heinzmann, T. Hanemann, Electrochim. Acta, 2014, 147, 704; DOI: https://doi.org/10.1016/j.electacta.2014.09.111.

    Article  CAS  Google Scholar 

  9. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem. Soc. Rev., 2015, 44, 7484; DOI: https://doi.org/10.1039/c5cs00303b.

    Article  PubMed  CAS  Google Scholar 

  10. E. P. Roth, C.J. Orendorff, Electrochem. Soc. Interface, 2012, 21, 45; DOI: https://doi.org/10.1149/2.F04122if.

    Article  CAS  Google Scholar 

  11. Y. Miao, P. Hynan, A. Jouanne, A. Yokochi, Energies, 2019, 12, 1074; DOI: https://doi.org/10.3390/en12061074.

    Article  CAS  Google Scholar 

  12. K. Xu, C. A. Angell, J. Electrochem. Soc., 2002, 149, 7, A920; DOI: https://doi.org/10.1149/1.1496104.

    Article  CAS  Google Scholar 

  13. N. Shao, X.G. Sun, S. Dai, D. E. Jiang, J. Phys. Chem., B, 2011, 115, 12120; DOI: https://doi.org/10.1021/jp204401t.

    Article  PubMed  CAS  Google Scholar 

  14. B. Flamme, J. Światowska, M. Haddad, P. Phansavath, V. Ratovelomanana-Vidal, A. Chagnes, J. Electrochem. Soc., 2020, 167, 070508; DOI: https://doi.org/10.1149/1945-7111/ab63c3.

    Article  CAS  Google Scholar 

  15. S. Yoon, Int. J. Appl. Eng. Res., 2018, 13, 13547.

    Google Scholar 

  16. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem. Soc. Rev., 2015, 44, 7484; DOI: https://doi.org/10.1039/c5cs00303b.

    Article  PubMed  CAS  Google Scholar 

  17. K. Chiba, T. Ueda, Y. Yamaguchi, Y. Oki, F. Shimodate, K. Naoi, J. Electrochem. Soc., 2011, 158, A872; DOI: https://doi.org/10.1149/1.3593001.

    Article  CAS  Google Scholar 

  18. K. Yanada, K. Chiba, Y. Yamaguchi, H. Yamamoto, Electrochemistry, 2011, 79, 163; DOI: https://doi.org/10.5796/electrochemistry.79.163.

    Article  Google Scholar 

  19. K. Xu, C. A. Angell, J. Electrochem. Soc., 1998, 145, L70; DOI: https://doi.org/10.1149/1.1838419.

    Article  CAS  Google Scholar 

  20. X. G. Sun, C. A. Angell, J. Solid State Ionics, 2004, 175, 257; DOI: https://doi.org/10.1016/j.ssi.2003.11.035.

    Article  CAS  Google Scholar 

  21. X. G. Sun, C. A. Angell, Electrochem. Commun., 2005, 7, 261; DOI: https://doi.org/10.1016/j.elecom.2005.01.010.

    Article  CAS  Google Scholar 

  22. U. Tilstam, Org. Proc. Res. Dev., 2012, 16, 1273; DOI: https://doi.org/10.1021/op300108w.

    Article  CAS  Google Scholar 

  23. L. Rycerz, J. Therm. Anal. Calorim., 2013, 113, 231; DOI: https://doi.org/10.1007/s10973-013-3097-0.

    Article  CAS  Google Scholar 

  24. S. Hess, M. Wohlfahrt-Mehrens, M. Wachtler, J. Electrochem. Soc., 2015, 162, A3084; DOI: https://doi.org/10.1149/2.0121502jes.

    Article  CAS  Google Scholar 

  25. Y. Ugata, Y. Chen, S. Sasagawa, K. Ueno, M. Watanabe, H. Mita, J. Shimura, M. Nagamine, K. Dokko, J. Phys. Chem., C, 2022, 126, 10024; DOI: https://doi.org/10.1021/acs.jpcc.2c02922.

    Article  CAS  Google Scholar 

  26. V. S. Kolosnitsyn, E. V. Karaseva, L. V. Sheina, E. V. Ku’mina, Tez. dokladov XII Mezhdunar. konf. “Fundamental’nye problemy preobrazovaniya energii v litievykh elektrokhimicheskikh sistemakh” (Abstrs XII Int. Conf. “Fundamental Problems of Energy Conversion in Lithium Electrochemical Systems”) (Krasnodar, Russia, October 1–6, 2012), Kuban Gos. Univ., 2012, p. 252, ISBN 978-5-93491-455-5 (in Russian).

  27. M. Jereb, Green Chem., 2012, 14, 3047; DOI: https://doi.org/10.1039/c2gc36073j.

    Article  CAS  Google Scholar 

  28. B. Flamme, G. R. Garcia, M. Weil, M. Haddad, P. Phansavath, V. Ratovelomanana-Vidal, A. Chagnes, Green Chem., 2017, 19, 1828; DOI: https://doi.org/10.1039/C7GC00252A.

    Article  CAS  Google Scholar 

  29. V. S. Kolosnitsyn, L. V. Sheina, S. E. Mochalov, Russ. J. Electrochem., 2008. 44, 575; DOI: https://doi.org/10.1134/S102319350805011X.

    Article  CAS  Google Scholar 

  30. L. Jannelli, A. Lopez, R. Jalenti, L. Silvestri, J. Chem. Eng. Data, 1982, 27, 28; DOI: https://doi.org/10.1021/je00027a008.

    Article  CAS  Google Scholar 

  31. E. J. Plichta, W. K. Behl, J. Power Sources, 2000, 88, 192; DOI: https://doi.org/10.1016/S0378-7753(00)00367-0.

    Article  CAS  Google Scholar 

  32. D. Yaakov, Y. Gofer, D. Aurbach, I. C. Halalay, J. Electrochem. Soc., 2010, 157, A1383; DOI: https://doi.org/10.1149/1.3507259.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to G. B. Kamalova (Laboratory of New Materials for Electrochemical Energetics, Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences) for help in recording DSC thermograms of the objects of research and to the Center for Collective Use “Chemistry” for providing access to research equipment.

Funding

This work was carried out within the State Assignment (Research Direction No. 122031400252-2 “Electrode Materials and Electrolytes for Promising Energy Storage Systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Karaseva.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to the memory of Academician of the Russian Academy of Sciences G. A. Tolstikov (1933–2013).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 10, pp. 2377–2383, October, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheina, L.V., Karaseva, E.V., Shakirova, N.V. et al. Electrolytes based on sulfone mixtures for lithium and lithium-ion batteries: the low-temperature properties. Russ Chem Bull 72, 2377–2383 (2023). https://doi.org/10.1007/s11172-023-4036-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4036-2

Key words

Navigation