Skip to main content
Log in

Phthalocyanine-catalyzed oxidation of phenol with ammonium persulfate

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The oxidation of phenol with ammonium persulfate (NH4)2S2O8 carried out under conditions of the Elbs reaction and catalyzed by metal phthalocyanines was explored. The conditions were optimized for increasing the yield of hydroquinone up to 85% upon the 95% conversion of phenol. Phthalocyanines of FeII, FeIII, and Co were found to be the most active catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. P. Ananikov, L. L. Khemchyan, Yu. V. Ivanova, V. I. Bukhtiyarov, A. M. Sorokin, I. P. Prosvirin, S. Z. Vatsadze, A. V. Medved’ko, V. N. Nuriev, A. D. Dilman, V. V. Levin, I. V. Koptyug, K. V. Kovtunov, V. V. Zhivonitko, V. A. Likholobov, A. V. Romanenko, P. A. Simonov, V. G. Nenajdenko, O. I. Shmatova, V. M. Muzalevskiy, M. S. Nechaev, A. F. Asachenk, O. S. Morozov, P. B. Dzhevakov, S. N. Osipov, D. V. Vorobyeva, M. A. Topchiy, M. A. Zotova, S. A. Ponomarenko, O. V. Borshchev, Yu. N. Luponosov, A. A. Rempel, A. A. Valeeva, A. Yu. Stakheev, O. V. Turova, I. S. Mashkovsky, S. V. Sysolyatin, V. V. Malykhin, G. A. Bukhtiyarova, A. O. Terent’ev, I. B. Krylov, Russ. Chem. Rev., 2014, 83, 885; DOI: https://doi.org/10.1070/RC2014v83n10ABEH004471.

    Article  Google Scholar 

  2. P. E. Dai, R. H. Petty, C. W. Ingram, R. Szostak, Applied Catalysis A: General, 1996, 143, 101; DOI: https://doi.org/10.1016/0926-860X(96)00073-7.

    Article  CAS  Google Scholar 

  3. J. Varagnat, Ind. Eng. Chem., Prod. Res. Dev., 1976, 15, 212; DOI: https://doi.org/10.1021/i360059a015.

    CAS  Google Scholar 

  4. F. Minosci, P. Maggioni, Chim. Ind., 1977, 59, 239.

    Google Scholar 

  5. RU Pat. 2185368, Bul. Izobret. [Inv. Bull.], 2002, 20 (in Russian).

  6. J. Q. Xie, J. Z. Li, X. G. Meng, Transition Met. Chem., 2004, 29, 388; DOI: https://doi.org/10.1023/B:TMCH.0000027448.97271.c4.

    Article  CAS  Google Scholar 

  7. R. R. L. Martins, M. G. Neves, A. J. D. Silvestre, J. Mol. Catal. A: Chem., 2001, 172, 33; DOI: https://doi.org/10.1016/S1381-1169(01)00120-0.

    Article  CAS  Google Scholar 

  8. K. Ozoemena, N. Kuznetsova, T. Nyokong, J. Mol. Catal. A: Chem., 2001, 176, 29; DOI: https://doi.org/10.1016/S1381-1169(01)00243-6.

    Article  CAS  Google Scholar 

  9. S. V. Sirotin, A. Yu. Tolbin, I. F. Moskovskaya, S. S. Abramchuk, L. G. Tomilova, B. V. Romanovsky, J. Mol. Cat. A: Chem., 2010, 39; DOI: https://doi.org/10.1016/j.molcata.2009.11.017.

  10. A. B. Sorokin, Chem. Rev., 2013, 8152; DOI: https://doi.org/10.1021/cr4000072.

  11. U. Romano, M. Ricci, in Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications, Eds M. G. Clerici, O. A. Kholdeeva, Wiley, Hoboken, 2013, p. 451.

    Chapter  Google Scholar 

  12. W. Baker, N. C. Brown, J. Chem. Soc., 1948, 2303; DOI: https://doi.org/10.1039/JR9480002303.

  13. E. J. Behrman, Organic Reactions, 1988, 35, 421; DOI: https://doi.org/10.1002/0471264180.or035.02.

    Article  CAS  Google Scholar 

  14. E. J. Behrman, Beilstein J. Org. Chem., 2006, 2, 22; DOI: https://doi.org/10.1186/1860-5397-2-22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. RU Pat. 2700422, Bul. Izobret. [Inv. Bull.], 2019, 26 (in Russian).

  16. A. R. Gimadieva, Yu. Z. Khazimullina, I. B. Abdrakhmanov, A. G. Mustafin, Russ. J. Appl. Chem., 2022, 95, 436; DOI: https://doi.org/10.1134/S1070427222030144.

    Article  CAS  Google Scholar 

  17. C. J. Pereira Monteiro, M. A. Ferreira Faustino, M. d. G. Pinho Morgado Silva Neves, M. M. Quialheiro Simões, E. Sanjust. Catalysts, 2021, 11, 122; DOI: https://doi.org/10.3390/catal11010122.

    Article  Google Scholar 

  18. P. Kluson, M. Drobek, A. Zsigmond, J. Baranyi, P. Bata, S. Zarubova, A. Kalaji, Appl. Catal. B: Environ., 2009, 91, 605; DOI: https://doi.org/10.1016/j.apcatb.2009.06.033.

    Article  CAS  Google Scholar 

  19. A. Sorokin, B. Meunier, J. L. Séris, Science, 1995, 268, 5214, 1163; DOI: https://doi.org/10.1126/science.268.5214.1163.

    Article  Google Scholar 

  20. A. B. Sorokin, S. De Suzzoni-Dezard, D. Poillain, J. Noël, B. Meunier, J. Am. Chem. Soc., 1996, 118, 7410; DOI: https://doi.org/10.1021/ja960177m.

    Article  CAS  Google Scholar 

  21. A. B. Sorokin, L. Fraisse, A. Rabion, B. Meunier, J. Mol. Catal. A: Chem., 1997, 117, 103; DOI: https://doi.org/10.1016/S1381-1169(96)00415-3.

    Article  CAS  Google Scholar 

  22. J. Kruid, R. Fogel, J. Limson, Environmental Science and Pollution Research, 2018, 25, 32346; DOI: https://doi.org/10.1007/s11356-018-3215-4.

    Article  PubMed  CAS  Google Scholar 

  23. Ya.B. Platonova, A. S. Morozov, I. D. Burtsev, Yu. S. Korostei, V. Yu. Ionidi, B. V. Romanovsky, L. G. Tomilova, Mendeleev Commun., 2018, 28, 198; DOI: https://doi.org/10.1016/j.mencom.2018.03.030.

    Article  CAS  Google Scholar 

  24. N. S. Enikolopyan, K. A. Bogdanova, K. A. Askarov. Russ. Chem. Rev., 1983, 52, 13; DOI: https://doi.org/10.1070/RC1983v052n01ABEH002794.

    Article  Google Scholar 

  25. A. A. Botnar’, N. P. Domareva, D. A. Erzunov, N. A. Futerman, T. V. Tikhomirova, V. E. Maizlish, A. S. Vashurin, Russ. Chem. Bull., 2021, 70, 1297; DOI: https://doi.org/10.1007/s11172-021-3214-3.

    Article  Google Scholar 

  26. B. Assoah, L. F. Veiros, C. A. M. Afonso, N. R. Candeias, Eur. J. Org. Chem., 2016, 22, 3856; DOI: https://doi.org/10.1002/ejoc.201600616.

    Article  Google Scholar 

  27. Y. Ogata, T. Akada, Tetrahedron, 1970, 26, 5945; DOI: https://doi.org/10.1016/0040-4020(70)80032-1.

    Article  CAS  Google Scholar 

  28. U. C. Singh, K. Venkatarao, J. Inorg. Nucl. Chem., 1976, 38, 541; DOI: https://doi.org/10.1016/0022-1902(76)80300-4.

    Article  CAS  Google Scholar 

  29. M. Bressan, N. d’Alessandro, L. Liberatore, A. Morvillo, Coord. Chem. Rev., 1999, 185–186, 385; DOI: https://doi.org/10.1016/S0010-8545(99)00024-7.

    Article  Google Scholar 

  30. K. G. Aleksanyan, O. A. Stokolos, Yu. N. Zaitseva, E. V. Solodova, D. A. Belysheva, A. A. Botin, NefteGazoKhimia [PetrolueumGasChemistry], 2018, 3, 44 (in Russian).

    Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (State Assignment No. 122031400278-2). Spectral experiments were carried out using the equipment of the Center for Collective Use “Chemistry” at the Ufa Institute of Chemistry at the Ufa Federal Research Centre of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Gimadieva.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to the memory of Academician of the Russian Academy of Sciences G. A. Tolstikov (1933–2013).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 10, pp. 2372–2376, October, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimadieva, A.R., Khazimullina, Y.Z., Abdrakhmanov, I.B. et al. Phthalocyanine-catalyzed oxidation of phenol with ammonium persulfate. Russ Chem Bull 72, 2372–2376 (2023). https://doi.org/10.1007/s11172-023-4035-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4035-3

Key words

Navigation