Skip to main content
Log in

TaCl5 in the synthesis of amides from saturated monobasic carboxylic acids and functionally substituted primary aromatic amines

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reactions of saturated monobasic carboxylic acids with functionally substituted primary aromatic amines (3-amino-2-naphthol, benzo[d]thiazol-2-amine, and 4,4′-oxydianiline) with TaCl5 (0.2 equiv.) were found to be accompanied by the selective formation of carboxylic acid amides of various structures. A mechanism for the amidation of carboxylic acids in the presence of TaCl5 was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. I. V. Dyachenko, V. D. Dyachenko, P. V. Dorovatovskii, V. N. Khrustalev, V. G. Nenajdenko, Russ. Chem. Bull., 2021, 70, 949; DOI: https://doi.org/10.1007/s11172-021-3172-9.

    Article  CAS  Google Scholar 

  2. T. Cupido, J. Tulla-Puche, J. Spengler, F. Albericio, Current Opinion in Drug Discovery & Development, 2007, 10, 768.

    Google Scholar 

  3. J. W. Bode, Current Opinion in Drug Discovery & Development, 2006, 9, 765.

    Google Scholar 

  4. R. C. Larock, in Comprehensive Organic Transformations, VCH Publishers, Inc. New-York–VCH Verlagsgesellschaft, Weinheim, 1989, 1160.

    Google Scholar 

  5. P. Beak, R. A. Brown, J. Org. Chem., 1982, 47, 34; DOI: https://doi.org/10.1021/jo00340a008.

    Article  CAS  Google Scholar 

  6. M. Khaldi, F. Chrétien, Y. Chapleur, Bull. Soc. Chim. Fr., 1996, 133, 7.

    Google Scholar 

  7. J. W. Lynn, J. English Jr., J. Am. Chem. Soc., 1951, 73, 4284; DOI: https://doi.org/10.1021/ja01153a075.

    Article  CAS  Google Scholar 

  8. H. R. Snyder, R. E. Putnam, J. Am. Chem. Soc., 1954, 76, 33; DOI: https://doi.org/10.1021/ja01630a007.

    Article  CAS  Google Scholar 

  9. E. T. McCabe, W. F. Barthel, S. I. Gertler, S. A. Hall, J. Org. Chem., 1954, 45, 2750; DOI: https://doi.org/10.1021/jo01369a003.

    Google Scholar 

  10. C. R. Hauser, H. G. Walker Jr., J. Am. Chem. Soc., 1947, 69, 295; DOI: https://doi.org/10.1021/ja01194a040.

    Article  CAS  Google Scholar 

  11. M. V. S. Suryanarayana, K. S. Pandey, S. Prakash, C. D. Raghuveeran, R. S. Dangi, R. V Swamy, K. M. Rao, J. Pharm. Sci., 1991, 80, 1055; DOI: https://doi.org/10.1002/jps.2600801111.

    Article  PubMed  CAS  Google Scholar 

  12. J. A. Mitchell, E. E. Reid, J. Am. Chem. Soc., 1931, 53, 1879; DOI: https://doi.org/10.1021/ja01356a037.

    Article  CAS  Google Scholar 

  13. J. R. Ruhoff, E. E. Reid, J. Am. Chem. Soc., 1937, 59, 401; DOI: https://doi.org/10.1021/ja01281a054.

    Article  Google Scholar 

  14. S.-Y. Han, Y.-A. Kim, Tetrahedron, 2004, 60, 2447; DOI: https://doi.org/10.1016/j.tet.2004.01.020.

    Article  CAS  Google Scholar 

  15. C. A. G. N. Montalbetti, V. Falque, Tetrahedron, 2005, 61, 10827; DOI: https://doi.org/10.1016/j.tet.2005.08.031.

    Article  CAS  Google Scholar 

  16. M. Köhn, R. Breinbauer, Angew. Chem. Int. Ed., 2004, 43, 3106; DOI: https://doi.org/10.1002/anie.200401744.

    Article  Google Scholar 

  17. J. R. Martinelli, T. P. Clark, D. A. Watson, R. H. Munday, S. L. Buchwald, Angew. Chem., 2007, 119, 8612; DOI: https://doi.org/10.1002/ange.200702943.

    Article  Google Scholar 

  18. J. W. W. Chang, P. W. H. Chan, Angew. Chem. Int. Ed., 2008, 47, 1138; DOI: https://doi.org/10.1002/anie.200704695.

    Article  CAS  Google Scholar 

  19. S. Lang, J. A. Murphy, Chem. Soc. Rev., 2006, 35, 146; DOI: https://doi.org/10.1002/anie.200704695.

    Article  PubMed  CAS  Google Scholar 

  20. N. A. Owston, A. J. Parker, J. M. J. Williams, Org. Lett., 2007, 9, 3599; DOI: https://doi.org/10.1021/ol701445n.

    Article  PubMed  CAS  Google Scholar 

  21. R. V Kolakowski, N. Shangguan, R. R. Sauers, L. J. Williams, J. Am. Chem. Soc., 2006, 128, 5695; DOI: https://doi.org/10.1021/ja057533y.

    Article  PubMed  CAS  Google Scholar 

  22. C. Gunanathan, Y. Ben-David, D. Milstein, Science, 2007, 317, 790; DOI: https://doi.org/10.1126/science.1145295.

    Article  PubMed  CAS  Google Scholar 

  23. K. Fujita, R. Yamaguchi, Synlett, 2005, 2005, 560; DOI: https://doi.org/10.1055/s-2005-862381.

    Google Scholar 

  24. L. U. Nordstrøm, R. Madsen, Chem. Commun., 2007, 5034; DOI: https://doi.org/10.1039/B712685A.

    Google Scholar 

  25. V. Dragutan, I. Dragutan, L. Delaude, A. Demonceau, Coord. Chem. Rev., 2007, 251, 765; DOI: https://doi.org/10.1016/j.ccr.2006.09.002.

    Article  CAS  Google Scholar 

  26. L. U. Nordstrøm, H. Vogt, R. Madsen, J. Am. Chem. Soc., 2008, 130, 17672; DOI: https://doi.org/10.1021/ja808129p.

    Article  PubMed  Google Scholar 

  27. M. H. S. A. Hamid, P. A. Slatford, J. M. J. Williams, Adv. Synth. Catal., 2007, 349, 1555; DOI: https://doi.org/10.1002/adsc.200600638.

    Article  CAS  Google Scholar 

  28. A. L. A. Leggio, J. Bagalà, E. L. Belsito, A. Comandè, M. Greco, Chem. Central J., 2017, 11, 87; DOI: https://doi.org/10.1186/s13065-017-0318-9.

    Article  Google Scholar 

  29. J. D. Wilson, H. Weingarten, Can. J. Chem., 1970, 48, 983; DOI: https://doi.org/10.1139/v70-161.

    Article  CAS  Google Scholar 

  30. F. Tinnis, H. Lundberg, H. Adolfsson, Adv. Synth. Catal., 2012, 354, 2531; DOI: https://doi.org/10.1002/adsc.201200436.

    Article  CAS  Google Scholar 

  31. H. Lundberg, F. Tinnis, N. Selander, H. Adolfsson, Chem. Soc. Rev., 2014, 43, 2714; DOI: https://doi.org/10.1039/C3CS60345H.

    Article  PubMed  CAS  Google Scholar 

  32. H. Lundberg, F. Tinnis, H. Adolfsson, Chem.–A Eur. J., 2012, 18, 3822; DOI: https://doi.org/10.1002/chem.201104055.

    Article  CAS  Google Scholar 

  33. H. Lundberg, F. Tinnis, H. Adolfsson, Synlett, 2012, 23, 2201; DOI: https://doi.org/10.1055/s-0032-1316993.

    Article  CAS  Google Scholar 

  34. K. Ishihara, Y. Kuroki, N. Hanaki, S. Ohara, H. Yamamoto, J. Am. Chem. Soc., 1996, 118, 1569; DOI: https://doi.org/10.1021/ja953541a.

    Article  CAS  Google Scholar 

  35. Y. Terada, N. Ieda, K. Komura, Y. Sugi, Synthesis, 2008, 2008, 2318; DOI: https://doi.org/10.1021/ja953541a.

    Article  Google Scholar 

  36. K. Steliou, M. A. Poupart, J. Am. Chem. Soc., 1983, 105, 7130; DOI: https://doi.org/10.1021/ja00362a018.

    Article  CAS  Google Scholar 

  37. K. Steliou, A. Szczygielska-Nowosielska, A. Favre, M. A. Poupart, S. Hanessian, J. Am. Chem. Soc., 1980, 102, 7578; DOI: https://doi.org/10.1021/ja00545a038.

    Article  CAS  Google Scholar 

  38. A. C. Shekhar, A. R. Kumar, G. Sathaiah, V. L. Paul, M. Sridhar, P. S. Rao, Tetrahedron Lett., 2009, 50, 7099; DOI: https://doi.org/10.1016/j.tetlet.2009.10.006.

    Article  CAS  Google Scholar 

  39. D. Wei, C. Cui, Z. Qu, Y. Zhu, M. Tang, J. Mol. Struct.: THEOCHEM, 2010, 951, 89; DOI: https://doi.org/10.1016/j.theochem.2010.04.006.

    Article  CAS  Google Scholar 

  40. W. Muramatsu, T. Hattori, H. Yamamoto, Chem. Commun., 2021, 57, 6346; DOI: https://doi.org/10.1039/D1CC01795K.

    Article  CAS  Google Scholar 

  41. C. L. Allen, A. R. Chhatwal, J. M. J. Williams, Chem. Commun., 2012, 48, 666; DOI: https://doi.org/10.1039/C1CC15210F.

    Article  CAS  Google Scholar 

  42. A. M. Gabdullin, R. N. Kadikova, O. S. Mozgovoj, I. R. Ramazanov, ChemistrySelect, 2023, 8; DOI: https://doi.org/10.1002/slct.202204298.

  43. X. Xu, H. Wang, C. H. Tan, X. Ye, ACS Org. Inorg. Au, 2023, 3, 74; DOI: https://doi.org/10.1021/acsorginorgau.2c00056.

    Article  PubMed  CAS  Google Scholar 

  44. J. Petit, L. Magna, N. Mézailles, Coordin. Chem. Rev., 2022, 450, 214227; DOI: https://doi.org/10.1016/j.ccr.2021.214227.

    Article  CAS  Google Scholar 

  45. M. N. Sokolov, V. P. Fedin, Coordin. Chem. Rev., 2004, 248, 925; DOI: https://doi.org/10.1016/j.ccr.2004.03.021.

    Article  CAS  Google Scholar 

  46. H. Tsuji, H. Yamamoto, J. Am. Chem. Soc., 2016, 138, 14218; DOI: https://doi.org/10.1021/jacs.6b09482.

    Article  PubMed  CAS  Google Scholar 

  47. R. B. Wagner, US Pat. 1960, 2932665.

  48. C. R. Cartwright, US Pat. 1959, 2916514.

  49. G. Frederick, V. Stryk, Can. Pat. 1965, 716609.

  50. Y. Kataoka, Ph. D. Thesis, Kyoto University, Japan, Kyoto, 1992, 161.

    Google Scholar 

  51. T. Oshiki, K. Tanaka, J. Yamada, T. Ishiyama, Y. Kataoka, K. Mashima, K. Tani, K. Takai, Organometallics, 2003, 22, 464; DOI: https://doi.org/10.1021/om020510x.

    Article  CAS  Google Scholar 

  52. K. Yamamoto, H. Tsurugi, K. Mashima, Chem. Eur. J., 2015, 21, 11369; DOI: https://doi.org/10.1002/chem.201501164.

    Article  PubMed  CAS  Google Scholar 

  53. R. Ramirez-Contreras, N. Bhuvanesh, O. V. Ozerov, Organometallics, 2015, 34, 1143; DOI: https://doi.org/10.1021/acs.organomet.5b00205.

    Article  CAS  Google Scholar 

  54. K. Takai, M. Yamada, K. Utimoto, Chem. Lett., 1995, 24, 851; DOI: https://doi.org/10.1246/cl.1995.851.

    Article  Google Scholar 

  55. J. A. Varela, C. Saá, Chem. Rev., 2003, 103, 3787; DOI: https://doi.org/10.1021/cr030677f.

    Article  PubMed  CAS  Google Scholar 

  56. S. Kotha, E. Brahmachary, K. Lahiri, Eur. J. Org. Chem., 2005, 2005, 4741; DOI: https://doi.org/10.1002/ejoc.200500411.

    Article  Google Scholar 

  57. R. M. Sultanov, R. R. Ismagilov, N. R. Popod’ko, A. R. Tulyabaev, U. M. Dzhemilev, J. Organomet. Chem., 2013, 724, 51; DOI: https://doi.org/10.1016/j.jorganchem.2012.10.001.

    Article  CAS  Google Scholar 

  58. R. M. Sultanov, R. R. Ismagilov, N. R. Popod’ko, A. R. Tulyabaev, D. S. Sabirov, U. M. Dzhemilev, J. Organomet. Chem., 2013, 745–746, 120; DOI: https://doi.org/10.1016/j.jorganchem.2013.07.017.

    Article  Google Scholar 

  59. R. M. Sultanov, U. M. Dzhemilev, E. V. Samoilova, R. R. Ismagilov, L. M. Khalilov, N. R. Popod’ko, J. Organomet. Chem., 2012, 715, 5; DOI: https://doi.org/10.1016/j.jorganchem.2012.05.023.

    Article  CAS  Google Scholar 

  60. R. N. Kadikova, I. R. Ramazanov, A. K. Amirova, O. S. Mozgovoj, U. M. Dzhemilev, Russ. Chem. Bull., 2022, 71, 2149; DOI: https://doi.org/10.1007/s11172-022-3640-x.

    Article  CAS  Google Scholar 

  61. A. M. Gabdullin, R. N. Kadikova, I. R. Ramazanov, Russ. Chem. Bull., 2023, 72, 1166; DOI: https://doi.org/10.1007/s11172-023-3885-z.

    Article  CAS  Google Scholar 

  62. J. Recht, B. I. Cohen, A. S. Goldman, J. Kolm, Tetrahedron Lett., 1990, 31, 7281; DOI: https://doi.org/10.1016/S0040-4039(00)88544-5.

    Article  CAS  Google Scholar 

  63. J. B. Fang, R. Sanghi, J. Kohn, A. S. Goldman, Inorg. Chim. Acta, 2004, 357, 2415; DOI: https://doi.org/10.1016/j.ica.2004.03.007.

    Article  CAS  Google Scholar 

  64. F. Marchetti, G. Pampaloni, Chem. Commun., 2012, 48, 635; DOI: https://doi.org/10.1039/C1CC14592D.

    Article  CAS  Google Scholar 

  65. J. C. Park, J. H. Pee, H. H. Park, J. Materials Research, 2010, 25, 835; DOI: https://doi.org/10.1557/JMR.2010.0114.

    Article  CAS  Google Scholar 

  66. K. M. Kadish, X. Mu, J. E. Anderson, Pure Appl. Chem., 1989, 61, 1823; DOI: https://doi.org/10.1351/pac198961101823.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (Project No. 23-23-00499). The structural studies were carried out at the Center for Collective Use of the N. D. Zelinsky Institute of the Russian Academy of Sciences and Regional Center for Collective Use “Agidel” of the Institute of Petrochemistry and Catalysis (Ufa Federal Research Center of the Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Kadikova.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interests

The authors declare no competing interests.

Additional information

Dedicated to the memory of Academician of the Russian Academy of Sciences G. A. Tolstikov (1933–2013).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 10, pp. 2350–2356, October, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabdullin, A.M., Kadikova, R.N., Yulbarisov, A.B. et al. TaCl5 in the synthesis of amides from saturated monobasic carboxylic acids and functionally substituted primary aromatic amines. Russ Chem Bull 72, 2350–2356 (2023). https://doi.org/10.1007/s11172-023-4032-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4032-6

Key words

Navigation