Skip to main content
Log in

Cobalt(I)-catalyzed [6π+2π]-cycloaddition of 1,3-diynes to cyclohepta-1,3,5-triene in the synthesis of new disubstituted bicyclo[4.2.1]nona-2,4,7-trienes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The catalytic [6π+2π]-cycloaddition of symmetric 1,3-diynes to cyclohepta-1,3,5-triene under the action of the three-component catalytic system Co(acac)2(dppe)/Zn/ZnI2 was realized for the first time. Previously unreported disubstituted bicyclo[4.2.1]nona-2,4,7-trienes were obtained in high yields (78–98%) and characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Lautens, W. Klute, W. Tam, Chem. Rev., 1996, 96, 49; DOI: https://doi.org/10.1021/cr950016l.

    Article  CAS  PubMed  Google Scholar 

  2. H. Fruhauf, Chem. Rev., 1997, 97, 523; DOI: https://doi.org/10.1021/cr941164z.

    Article  PubMed  Google Scholar 

  3. J. H. Rigby, Acc. Chem. Res., 1993, 26, 579; DOI: https://doi.org/10.1021/ar00035a003.

    Article  CAS  Google Scholar 

  4. V. A. D’yakonov, G. N. Kadikova, U. M. Dzhemilev, Russ. Chem. Rev., 2018, 87, 797; DOI: https://doi.org/10.1070/RCR4793.

    Article  Google Scholar 

  5. H. L. Mansell, Tetrahedron, 1996, 52, 6025; DOI: https://doi.org/10.1016/0040-4020(95)01076-9.

    Article  CAS  Google Scholar 

  6. J. B. Brenneman, S. F. Martin, Org. Lett., 2004, 6, 1329; DOI: https://doi.org/10.1021/ol049631e.

    Article  CAS  PubMed  Google Scholar 

  7. P. J. Parsons, N. P. Camp, N. Edwards, L. R. Sumoreeah, Tetrahedron, 2000, 56, 309; DOI: https://doi.org/10.1016/S0040-4020(99)00909-6.

    Article  CAS  Google Scholar 

  8. T. Hjelmgaard, I. Søtofte, D. Tanner, J. Org. Chem., 2005, 70, 5688; DOI: https://doi.org/10.1021/jo0506682.

    Article  CAS  PubMed  Google Scholar 

  9. J. R. Malpass, D. A. Hemmings, A. L. Wallis, Tetrahedron Lett., 1996, 37, 3911; DOI: https://doi.org/10.1016/0040-4039(96)00687-9.

    Article  CAS  Google Scholar 

  10. J. R. Malpass, D. A. Hemmings, A. L. Wallis, S. R. Fletcher, S. Patel, J. Chem. Soc., Perkin Trans. 1, 2001, 1044; DOI: https://doi.org/10.1039/B010178H.

  11. N. Takada, M. Iwatsuki, K. Suenaga, D. Uemura, Tetrahedron Lett., 2000, 41, 6425; DOI: https://doi.org/10.1016/S0040-4039(00)00931-X.

    Article  CAS  Google Scholar 

  12. H. Kigoshi, N. Hayashi, D. Uemura, Tetrahedron Lett., 2001, 42, 7469; DOI: https://doi.org/10.1016/S0040-4039(01)01583-0.

    Article  CAS  Google Scholar 

  13. E. Wright, T. Gallagher, C. G. V. Sharples, S. Wonnacott, Bioorg. Med. Chem. Lett., 1997, 7, 2867; DOI: https://doi.org/10.1016/S0960-894X(97)10090-7.

    Article  CAS  Google Scholar 

  14. C. G. V. Sharples, S. Kaiser, L. Soliakov, M. J. Marks, A. C. Collins, M. Washburn, E. Wright, J. A. Spencer, T. Gallagher, P. Whiteaker, S. Wonnacott, J. Neurosci., 2000, 20, 2783; DOI: https://doi.org/10.1523/JNEUROSCI.20-08-02783.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D. Gundisch, T. Kampchen, S. Schwarz, G. Seitz, J. Siegl, T. Wegge, Bioorg. Med. Chem., 2002, 10, 1; DOI: https://doi.org/10.1016/S0968-0896(01)00258-9.

    Article  CAS  PubMed  Google Scholar 

  16. C. G. V. Sharples, G. Karig, G. L. Simpson, J. A. Spencer, E. Wright, N. S. Millar, S. Wonnacott, T. Gallagher, J. Med. Chem., 2002, 45, 3235; DOI: https://doi.org/10.1021/jm020814l.

    Article  CAS  PubMed  Google Scholar 

  17. A. Sutherland, T. Gallagher, C. G. V. Sharples, S. Wonnacott, J. Org. Chem., 2003, 68, 2475; DOI: https://doi.org/10.1021/jo026698b.

    Article  CAS  PubMed  Google Scholar 

  18. G. Karig, J. M. Large, C. G. V. Sharples, A. Sutherland, T. Gallagher, S. Wonnacott, Bioorg. Med. Chem. Lett., 2003, 13, 2825; DOI: https://doi.org/10.1016/S0960-894X(03)00594-8.

    Article  CAS  PubMed  Google Scholar 

  19. V. A. D’yakonov, G. N. Kadikova, R. N. Nasretdinov, L. U. Dzhemileva, U. M. Dzhemilev, Eur. J. Org. Chem., 2020, 5, 623; DOI: https://doi.org/10.1002/ejoc.201901837.

    Article  Google Scholar 

  20. G. N. Kadikova, V. A. D’yakonov, R. N. Nasretdinov, L. U. Dzhemileva, U. M. Dzhemilev, Mendeleev Commun., 2020, 30, 318; DOI: https://doi.org/10.1016/j.mencom.2020.05.019.

    Article  CAS  Google Scholar 

  21. G. N. Kadikova, V. A. D’yakonov, R. N. Nasretdinov, L. U. Dzhemileva, U. M. Dzhemilev, Tetrahedron, 2020, 76, 130996; DOI: https://doi.org/10.1016/j.tet.2020.130996.

    Article  CAS  Google Scholar 

  22. G. N. Kadikova, V. A. D’yakonov, U. M. Dzhemilev, Molecules, 2021, 26, 2932; DOI: https://doi.org/10.3390/molecules26102932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. G. N. Kadikova, V. A. D’yakonov, U. M. Dzhemilev, ACS Omega, 2021, 6, 21755; DOI: https://doi.org/10.1021/acsomega.1c03321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Green, S. M. Heathcock, D. Wood, J. C. S. Dalton, 1973, 1564; DOI: https://doi.org/10.1039/DT9730001564.

  25. Z. Goldschmidt, S. Antebi, J. Organomet. Chem., 1983, 259, 119; DOI: https://doi.org/10.1016/0022-328X(83)85162-6.

    Article  CAS  Google Scholar 

  26. D. Cunningham, N. Hallinan, G. Moran, P. McArdle, J. Organomet. Chem., 1987, 333, 85; DOI: https://doi.org/10.1016/S0022-328X(00)99034-X.

    Article  CAS  Google Scholar 

  27. Z. Goldschmidt, E. Genizi, H. E. Gottlieb, D. Hezroni-Langermann, J. Organomet. Chem., 1991, 420, 419; DOI: https://doi.org/10.1016/0022-328X(91)86468-6.

    Article  CAS  Google Scholar 

  28. Z. Goldschmidt, E. Genizi, Synthesis, 1985, 10, 949; DOI: https://doi.org/10.1055/s-1985-31397.

    Article  Google Scholar 

  29. J. H. Rigby, J. A. Henshilwood, J. Am. Chem. Soc., 1991, 113, 5122; DOI: https://doi.org/10.1021/ja00013a091.

    Article  CAS  Google Scholar 

  30. J. H. Rigby, H. S. Ateeq, N. R. Charles, S. V. Cuisiat, M. D. Ferguson, J. A. Henshilwood, A. C. Krueger, C. O. Ogbu, K. M. Short, M. J. Heegt, J. Am. Chem. Soc., 1993, 115, 1382; DOI: https://doi.org/10.1021/ja00057a023.

    Article  CAS  Google Scholar 

  31. J. H. Rigby, Tetrahedron, 1999, 55, 4521; DOI: https://doi.org/10.1016/S0040-4020(99)00186-6.

    Article  CAS  Google Scholar 

  32. J. H. Rigby, H. S. Ateeq, N. R. Choler, J. A. Henshilwood, K. M. Short, P. M. Sugathapala, Tetrahedron, 1993, 49, 5495; DOI: https://doi.org/10.1016/S0040-4020(01)87265-3.

    Article  CAS  Google Scholar 

  33. J. H. Rigby, H. S. Ateeq, J. Am. Chem. Soc., 1990, 112, 6442; DOI: https://doi.org/10.1021/ja00173a067.

    Article  CAS  Google Scholar 

  34. J. H. Rigby, S. B. Laurent, Z. Kamal, M. J. Heeg, J. Org. Lett., 2008, 10, 5609; DOI: https://doi.org/10.1021/ol802401a.

    Article  CAS  Google Scholar 

  35. I. Fischler, F. W. Grevels, J. Leitich, S. Ozkar, Chem. Ber., 1991, 124, 2857; DOI: https://doi.org/10.1002/cber.19911241229.

    Article  CAS  Google Scholar 

  36. K. Chaffee, J. B. Sheridan, A. Aistars, Organometallics, 1992, 11, 18; DOI: https://doi.org/10.1021/om00037a010.

    Article  CAS  Google Scholar 

  37. J. H. Rigby, C. R. Heap, N. C. Warshakoon, Tetrahedron, 2000, 56, 2305; DOI: https://doi.org/10.1016/S0040-4020(99)01113-8.

    Article  CAS  Google Scholar 

  38. J. H. Rigby, V. P. Sandanayaka, Tetrahedron Lett., 1993, 34, 935; DOI: https://doi.org/10.1016/S0040-4039(00)77458-2.

    Article  CAS  Google Scholar 

  39. J. H. Rigby, M. Kirova, N. Niyaz, F. Mohammadi, Synlett, 1997, 805; DOI: https://doi.org/10.1055/s-1997-5772.

  40. K. Mach, H. Antropiusova, P. Sedmera, V. Hanus, F. Turecek, J. Chem. Soc., Chem. Commun., 1983, 805; DOI: https://doi.org/10.1039/C39830000805.

  41. K. Mach, H. Antropiusova, F. Turecek, V. Hanus, P. Sedmera, Tetrahedron Lett., 1980, 21, 4879; DOI: https://doi.org/10.1016/S0040-4039(00)71144-0.

    Article  CAS  Google Scholar 

  42. K. Mach, H. Antropiusova, L. Petrusova, V. Hanus, F. Turecek, Tetrahedron, 1984, 40, 3295; DOI: https://doi.org/10.1016/0040-4020(84)85014-0.

    Article  CAS  Google Scholar 

  43. R. Klein, P. Sedmera, J. Cejka, K. Mach, J. Organomet. Chem., 1992, 436, 143; DOI: https://doi.org/10.1016/0022-328X(92)85042-U.

    Article  CAS  Google Scholar 

  44. J-W. Kaagman, M. Rep, M. Horacek, P. Sedmera, J. Cejka, V. Varga, K. Mach, Collect. Czech. Chem. Commun., 1996, 61, 1722; DOI: https://doi.org/10.1135/cccc19961722.

    Article  CAS  Google Scholar 

  45. G. Hilt, A. Paul, C. Hengst, Synthesis, 2009, 19, 3305; DOI: https://doi.org/10.1055/s-0029-1216900.

    Article  Google Scholar 

  46. H. Clavier, K. L. Jeune, I. Riggi, A. Tenaglia, G. Buono, J. Org. Lett., 2011, 13, 308; DOI: https://doi.org/10.1021/ol102783x.

    Article  CAS  Google Scholar 

  47. M. Achard, A. Tenaglia, G. Buono, Org. Lett., 2005, 7, 2353; DOI: https://doi.org/10.1021/ol050618j.

    Article  CAS  PubMed  Google Scholar 

  48. N. Toselli, D. Martin, M. Achard, A. Tenaglia, T. Burgi, G. Buono, Adv. Synth. Catal., 2008, 350, 280; DOI: https://doi.org/10.1002/adsc.200700424.

    Article  CAS  Google Scholar 

  49. J. H. Rigby, K. M. Short, H. S. Ateeq, J. A. Henshilwood, J. Organomet. Chem., 1992, 57, 5290; DOI: https://doi.org/10.1021/jo00046a007.

    Article  CAS  Google Scholar 

  50. J. H. Rigby, C. Fiedler, J. Org. Chem., 1997, 62, 6106; DOI: https://doi.org/10.1021/jo9707444.

    Article  CAS  Google Scholar 

  51. J. H. Rigby, L. W. Mann, B. J. Myers, Tetrahedron Lett., 2001, 42, 8773; DOI: https://doi.org/10.1016/S0040-4039(01)01930-X.

    Article  CAS  Google Scholar 

  52. J. H. Rigby, M. A. Kondratenko, C. Fiedler, Org. Lett., 2000, 2, 3917; DOI: https://doi.org/10.1021/ol0002931.

    Article  CAS  PubMed  Google Scholar 

  53. E. P. Kündig, F. Robvieux, M. Kondratenko, Synthesis, 2002, 14, 2053; DOI: https://doi.org/10.1055/s-2002-34393.

    Google Scholar 

  54. T. Schmidt, F. Bienewald, R. Goddard, J. Chem. Soc., Chem. Commun., 1994, 1857; DOI: https://doi.org/10.1039/C39940001857.

  55. T. Schmidt, Chem. Ber., 1997, 130, 453; DOI: https://doi.org/10.1002/cber.19971300404.

    Article  CAS  Google Scholar 

  56. A. Tenaglia, S. Gaillard, Angew. Chem., 2008, 120, 2488; DOI: https://doi.org/10.1002/ange.200705482.

    Article  Google Scholar 

  57. X. Zhang, J. Wang, H. Zhao, J. Wang, Organometallics, 2013, 32, 3529; DOI: https://doi.org/10.1021/om4003736.

    Article  CAS  Google Scholar 

  58. V. A. D’yakonov, G. N. Kadikova, D. I. Kolokol’tsev, L. M. Khalilov, U. M. Dzhemilev, Russ. Chem. Bull., 2013, 62, 441; DOI: https://doi.org/10.1007/s11172-013-0060-y.

    Article  Google Scholar 

  59. V. A. D’yakonov, G. N. Kadikova, L. M. Khalilov, U. M. Dzhemilev, Russ. Chem. Bull., 2011, 60, 182; DOI: https://doi.org/10.1007/s11172-011-0028-8.

    Article  Google Scholar 

  60. V. A. D’yakonov, G. N. Kadikova, U. M. Dzhemilev, Tetrahedron Lett., 2011, 52, 2780; DOI: https://doi.org/10.1016/j.tetlet.2011.03.131.

    Article  Google Scholar 

  61. V. A. D’yakonov, G. N. Kadikova, L. M. Khalilov, U. M. Dzhemilev, Russ. J. Org. Chem., 2013, 49, 1139; DOI: https://doi.org/10.1134/S1070428013080071.

    Article  Google Scholar 

  62. V. A. D’yakonov, G. N. Kadikova, D. I. Kolokoltsev, I. R. Ramazanov, U. M. Dzhemilev, Eur. J. Org. Chem., 2015, 4464; DOI: https://doi.org/10.1002/ejoc.201500442.

  63. G. N. Kadikova, D. I. Kolokoltsev, E. S. Meshcheryakova, V. A. D’yakonov, U. M. Dzhemilev, Russ. Chem. Bull., 2016, 65, 195; DOI: https://doi.org/10.1007/s11172-016-1283-5.

    Article  CAS  Google Scholar 

  64. V. A. D’yakonov, G. N. Kadikova, L. M. Khalilov, U. M. Dzhemilev, Russ. J. Org. Chem., 2018, 54, 832; DOI: https://doi.org/10.1134/S1070428018060027.

    Article  Google Scholar 

  65. V. A. Dyakonov, G. N. Kadikova, R. N. Nasretdinov, D. I. Kolokol’tsev, U. M. Dzhemilev, Tetrahedron Lett., 2017, 58, 1714; DOI: https://doi.org/10.1016/j.tetlet.2017.03.057.

    Article  CAS  Google Scholar 

  66. G. N. Kadikova, L. U. Dzhemileva, V. A. D’yakonov, U. M. Dzhemilev, ACS Omega, 2020, 5, 31440; DOI: https://doi.org/10.1021/acsomega.0c05072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. V. A. D’yakonov, G. N. Kadikova, R. N. Nasretdinov, L. U. Dzhemileva, U. M. Dzhemilev, J. Org. Chem., 2019, 84, 9058; DOI: https://doi.org/10.1021/acs.joc.9b00996.

    Article  PubMed  Google Scholar 

  68. A. I. Kovalev, I. A. Khotina, Russ. Chem. Bull., 2021, 70, 1994; DOI: https://doi.org/10.1007/s11172-021-3307-z.

    Article  CAS  Google Scholar 

  69. M. S. Kobzev, A. A. Titov, A. V. Varlamov, Russ. Chem. Bull., 2021, 70, 1213; DOI: https://doi.org/10.1007/s11172-021-3208-1.

    Article  CAS  Google Scholar 

  70. U. M. Dzhemilev, L. I. Khusainova, K. S. Ryazanov, L. O. Khafizova, Russ. Chem. Bull., 2021, 70, 1851; DOI: https://doi.org/10.1007/s11172-021-3292-2.

    Article  CAS  Google Scholar 

  71. C. Francisco, B. Banaigs, R. Valls, L. Codomier, Tetrahedron Lett., 1985, 26, 2629; DOI: https://doi.org/10.1016/S0040-4039(00)98121-8.

    Article  CAS  Google Scholar 

  72. S. N. Suryawanshi, U. R. Nayak, Tetrahedron Lett., 1977, 18, 2619; DOI: https://doi.org/10.1016/S0040-4039(01)83836-3.

    Article  Google Scholar 

  73. C. Francisco, B. Banaigs, J. Teste, A. Cave, J. Org. Chem., 1986, 51, 1115; DOI: https://doi.org/10.1021/jo00357a033.

    Article  CAS  Google Scholar 

  74. S. Dev, Acc. Chem. Res., 1981, 14, 82; DOI: https://doi.org/10.1021/ar00063a004.

    Article  CAS  Google Scholar 

  75. F. Dorn, D. Arigoni, Experientia, 1974, 30, 851; DOI: https://doi.org/10.1007/BF01938319.

    Article  CAS  Google Scholar 

  76. D. H. R. Barton, N. H. Werstiuk, J. Chem. Soc. C, 1968, 148; DOI: https://doi.org/10.1039/J39680000148.

  77. F. Bohlmann, C. Zdero, J. Jakupovic, H. Greger, Phytochem., 1983, 22, 503; DOI: https://doi.org/10.1016/0031-9422(83)83034-9.

    Article  CAS  Google Scholar 

  78. V. A. Dyakonov, G. N. Kadikova, R. N. Nasretdinov, U. M. Dzhemilev, Tetrahedron Lett., 2017, 58, 1839; DOI: https://doi.org/10.1016/j.tetlet.2017.03.084.

    Article  CAS  Google Scholar 

  79. M. Achard, M. Mosrin, A. Tenaglia, G. Buono, J. Org. Chem., 2006, 71, 2907; DOI: https://doi.org/10.1021/jo052630v.

    Article  CAS  PubMed  Google Scholar 

  80. V. A. Dyakonov, G. N. Kadikova, L. U. Dzhemileva, G. F. Gazizullina, I. R. Ramazanov, U. M. Dzhemilev, J. Org. Chem., 2017, 82, 471; DOI: https://doi.org/10.1021/acs.joc.6b02540.

    Article  CAS  PubMed  Google Scholar 

  81. V. A. D’yakonov, G. N. Kadikova, G. F. Gazizullina, U. M. Dzhemilev, ChemistrySelect, 2018, 3, 6221; DOI: https://doi.org/10.1002/slct.201801028.

    Article  Google Scholar 

  82. V. A. Dyakonov, G. N. Kadikova, G. F. Gazizullina, L. M. Khalilov, U. M. Dzhemilev, Tetrahedron Lett., 2015, 56, 2005; DOI: https://doi.org/10.1016/j.tetlet.2015.02.127.

    Article  CAS  Google Scholar 

  83. V. A. D’yakonov, G. N. Kadikova, G. F. Gazizullina, U. M. Dzhemilev, Russ. Chem. Bull., 2016, 65, 200; DOI: https://doi.org/10.1007/s11172-016-1284-4.

    Article  Google Scholar 

  84. L. Brandsma, Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Techniques, Elsevier Academic Press, Bilthoven, the Netherlands, 2004, 470 pp.

    Google Scholar 

  85. F. A. Cotton, O. D. Faut, M. L. Goodgame, R. H. Holm, J. Am. Chem. Soc., 1961, 83, 1780; DOI: https://doi.org/10.1021/ja01469a002.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed in the framework of a state task (project No. FMRS-2022-0075). Structural studies were carried out at the Regional Center of Collective Usage “Agidel” of the Ufa Federal Research Center of the Russian Academy of Sciences, in its branch at the Institute of Petrochemistry and Catalysis of the Ufa Federal Research Center of RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kadikova.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interests

The authors declare no competing interests.

Additional information

Dedicated to the memory of Academician of the Russian Academy of Sciences G. A. Tolstikov (1933–2013).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 10, pp. 2338–2344, October, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadikova, G.N. Cobalt(I)-catalyzed [6π+2π]-cycloaddition of 1,3-diynes to cyclohepta-1,3,5-triene in the synthesis of new disubstituted bicyclo[4.2.1]nona-2,4,7-trienes. Russ Chem Bull 72, 2338–2344 (2023). https://doi.org/10.1007/s11172-023-4030-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4030-8

Key words

Navigation