Skip to main content
Log in

Determination of the phase transition of solutions of lithium salts in sulfolane by the molecular dynamics method

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

An approach for the determination of the melting point of electrolyte solutions using the molecular dynamics method is considered. In order to calculate the melting point of the electrolyte solutions, it is proposed to successively calculate the density of the system using the molecular dynamics approach in the temperature range, which includes the expected melting point. The melting point was identified as the temperature at which the temperature dependence of density of the studied solutions registered an inflection point. The proposed approach is verified using sulfolane and solutions of lithium salts in sulfolane as examples, and a good agreement between the melting point determined using differential scanning calorimetry and the calculated temperature is observed. The discrepancy between the calculated and the experimental values of the densities of the studied systems did not exceed 3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. N. Piao, X. Gao, H. Yang, Z. Guo, G. Hu, H.-M. Cheng, F. Li, eTransportation, 2022, 11, 100145; DOI: https://doi.org/10.1016/j.etran.2021.100145.

    Article  Google Scholar 

  2. P. Lyu, X. Liu, J. Qu, J. Zhao, Y. Huo, Z. Qu, Z. Rao, Energy Stor. Mater., 2020, 31, 195; DOI: https://doi.org/10.1016/j.ensm.2020.06.042.

    Google Scholar 

  3. T. L. Kulova, A. M. Skundin, Electrochem. Energ., 2017, 17, 61; DOI: https://doi.org/10.18500/1608-4039-2017-2-61-88.

    Google Scholar 

  4. X. Su, Y. Xu, Y. Wu, H. Li, J. Yang, Y. Liao, R. Qu, Z. Zhang, Energy Stor. Mater., 2023, 56, 642; DOI: https://doi.org/10.1016/j.ensm.2023.01.044.

    Google Scholar 

  5. Ukaz Prezidenta Rossii. Osnovy gosudarstvennoy politiki RF v Arktike do 2035 goda [Decree of the President of Russia. Fundamentals of the State Policy of the Russian Federation in the Arctic until 2035], Moscow, 2020 (in Russian).

  6. Rasporyazhenie Pravitel’stva RF ot 13.11.2009 N 1715-r. Ob Energeticheskoy strategii Rossii na period do 2030 goda [Decree of the Government of the Russian Federation Dating from November 13, 2009 N 1715-r. On the Energy Strategy of Russia for the Period until 2030], Moscow, 2009 (in Russian).

  7. A. Lex-Balducci, W. Henderson, S. Passerini, in Lithium-Ion Batteries, Eds X. Yuan, H. Liu, J. Zhang, Taylor & Francis Group, Boca Raton, 2011, 50 pp.

  8. K. Xu, Chem. Rev., 2014, 114, 11503; DOI: https://doi.org/10.1021/cr500003w.

    Article  CAS  PubMed  Google Scholar 

  9. W. Xue, T. Qin, Q. Li, M. Zan, X. Yu, H. Li, Energy Stor. Mater., 2022, 50, 598; DOI: https://doi.org/10.1016/j.ensm.2022.06.003.

    Google Scholar 

  10. T. R. Jow, K. Xu, O. Borodin, M. Ue, Electrolytes for Lithium and Lithium-Ion Batteries, Springer, New York–Heidelberg–Dordrecht–London, 2014, 492 pp.; DOI: https://doi.org/10.1007/978-1-4939-0302-3.

    Book  Google Scholar 

  11. M. Badar, S. Shamsi, J. Ahmed, A. Alam, Molecular Dynamics Simulations: Concept, Methods, and Applications, Springer Nature, Stockholm, Sweden, 2020, 24 pp.; DOI: https://doi.org/10.1007/978-3-030-94651-7_7.

    Google Scholar 

  12. D. Bedrov, J.-P. Piquemal, O. Borodin, A. D. J. MacKerell, B. Roux, C. Schröder, Chem. Rev., 2019, 119, 7940; DOI: https://doi.org/10.1021/acs.chemrev.8b00763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Han, Sci. Rep., 2019, 9, 1; DOI: https://doi.org/10.1038/s41598-019-42050-y.

    Article  Google Scholar 

  14. P. Kubisiak, A. Eilmes, J. Phys. Chem. B, 2020, 124, 9680–9689; DOI: https://doi.org/10.1021/acs.jpcb.0c07704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. E. V. Kuzmina, E. V. Karaseva, V. S. Kolosnitsyn, Russ. J. Phys. Chem. A, 2022, 96, 115; DOI: https://doi.org/10.1134/s0036024422010174.

    Article  CAS  Google Scholar 

  16. J. Lim, K.-K. Lee, C. Liang, K.-H. Park, M. Kim, K. Kwak, M. Cho, J. Phys. Chem. B, 2019, 123, 6651; DOI: https://doi.org/10.1021/acs.jpcb.9b02026.

    Article  CAS  PubMed  Google Scholar 

  17. M. G. D. Po’polo, G. A. Voth, J. Phys. Chem. B, 2004, 108, 1744; DOI: https://doi.org/10.1021/jp0364699.

    Article  Google Scholar 

  18. P. Ray, A. Balducci, B. Kirchner, J. Phys. Chem. B, 2018, 122, 10535; DOI: https://doi.org/10.1021/acs.jpcb.8b06022.

    Article  CAS  PubMed  Google Scholar 

  19. S. N. Luo, A. Strachan, D. C. Swift, J. Chem. Phys., 2004, 120, 11640; DOI: https://doi.org/10.1063/1.1755655.

    Article  CAS  PubMed  Google Scholar 

  20. S. N. Luo, T. J. Ahrens, Appl. Phys. Lett., 2003, 82, 1836; DOI: https://doi.org/10.1063/1.1563046.

    Article  CAS  Google Scholar 

  21. S. N. Luo, T. J. Ahrens, T. Çağin., A. Strachan, W. A. Goddard, D. C. Swift, Phys. Rev. B, 2003, 68; DOI: https://doi.org/10.1103/PhysRevB.68.134206.

  22. L. Zheng, S. N. Luo, D. L. Thompson, J. Chem. Phys., 2006, 124, 154504; DOI: https://doi.org/10.1063/1.2174002.

    Article  PubMed  Google Scholar 

  23. S. R. Phillpot, J. F. Lutsko, D. Wolf, S. Yip, Phys. Rev. B Condens. Matter., 1989, 40, 2831; DOI: https://doi.org/10.1103/physrevb.40.2831.

    Article  CAS  PubMed  Google Scholar 

  24. J. F. Lutsko, D. Wolf, S. R. Phillpot, S. Yip, Phys. Rev. B Condens. Matter., 1989, 40, 2855; DOI: https://doi.org/10.1103/physrevb.40.2841.

    Article  Google Scholar 

  25. J. Solca, A. J. Dyson, G. Steinebrunner, B. Kirchner, H. Huber, J. Chem. Phys., 1997, 224, 253; DOI: https://doi.org/10.1016/S0301-0104(97)00317-0.

    CAS  Google Scholar 

  26. J. Solca, A. J. Dyson, G. Steinebrunner, B. Kirchner, H. Huber, J. Chem. Phys., 1998, 108, 4107; DOI: https://doi.org/10.1063/1.475808.

    Article  CAS  Google Scholar 

  27. P. M. Agrawal, B. M. Rice, D. L. Thompson J. Chem. Phys., 2003, 118, 9680; DOI: https://doi.org/10.1063/1.1570815.

    Article  CAS  Google Scholar 

  28. P. M. Agrawal, B. M. Rice, D. L. Thompson, J. Chem. Phys., 2003, 119, 9617; DOI: https://doi.org/10.1063/1.1612915.

    Article  CAS  Google Scholar 

  29. G. F. Velardez, Alavi, D. L. Thompson, J. Chem. Phys., 2004, 120, 9151; DOI: https://doi.org/10.1063/1.1705573.

    Article  CAS  PubMed  Google Scholar 

  30. J. R. Morris, C. Z. Wang, K. M. Ho, C. T. Chan, Phys. Rev. B. Condens. Matter., 1994, 49, 3109; DOI: https://doi.org/10.1103/physrevb.49.3109.

    Article  CAS  PubMed  Google Scholar 

  31. J. R. Morris, X. Song, J. Chem. Phys., 2002, 116, 9352; DOI: https://doi.org/10.1063/1.1474581.

    Article  CAS  Google Scholar 

  32. E. Schwegler, M. Sharma, F. Gygi, G. Galli, PNAS, 2008, 105, 14779; DOI: https://doi.org/10.1073/pnas.0808137105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Yoo, S. S. Xantheas, X. C. Zeng, Chem. Phys. Lett., 2009, 481, 88; DOI: https://doi.org/10.1016/j.cplett.2009.09.075.

    Article  CAS  Google Scholar 

  34. W. G. Hoover, F. H. Ree, J. Chem. Phys., 1968, 49, 3609; DOI: https://doi.org/10.1063/1.1670641.

    Article  CAS  Google Scholar 

  35. W. G. Hoover, F. H. Ree, J. Chem. Phys., 1967, 47, 4873; DOI: https://doi.org/10.1063/1.1701730.

    Article  CAS  Google Scholar 

  36. D. Frenkel, A. J. C. Ladd, J. Chem. Phys., 1984, 81, 3188; DOI: https://doi.org/10.1063/1.448024.

    Article  CAS  Google Scholar 

  37. G. Grochola, J. Chem. Phys., 2005, 122, 46101; DOI: https://doi.org/10.1063/1.1842068.

    Article  PubMed  Google Scholar 

  38. G. Grochola, J. Chem. Phys., 2004, 120, 2122; DOI: https://doi.org/10.1063/1.1637575.

    Article  CAS  PubMed  Google Scholar 

  39. D. M. Eike, E. J. Maginn, J. Chem. Phys., 2006, 124, 164503; DOI: https://doi.org/10.1063/1.2188400.

    Article  PubMed  Google Scholar 

  40. D. M. Eike, J. F. Brennecke, E. J. Maginn, J. Chem. Phys., 2005, 122, 14115; DOI: https://doi.org/10.1063/1.1823371.

    Article  PubMed  Google Scholar 

  41. A. M. Prokhorov, Fizicheskaya entsiklopediya [Physical Encyclopedia], Bol’shaya rossiyskaya entsiklopediya, Moscow, 1992, Vol. 3, 672 pp. (in Russian).

    Google Scholar 

  42. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, J. Comput. Chem., 2005, 26, 1701; DOI: https://doi.org/10.1002/jcc.20291.

    Article  CAS  PubMed  Google Scholar 

  43. M. J. Robertson, J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory. Comput., 2015, 11, 3499; DOI: https://doi.org/10.1021/acs.jctc.5b00356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Mukherji, N. V. S. Avula, S. Balasubramanian, ACS Omega, 2020, 5, 28285; DOI: https://doi.org/10.1021/acsomega.0c04243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. A. R. Yusupova, E. V. Kuzmina, V. S. Kolosnitsyn, J. Phys. Chem. B, 2022, 126, 7676; DOI: https://doi.org/10.1021/acs.jpcb.2c03286.

    Article  CAS  PubMed  Google Scholar 

  46. E. V. Kuzmina, E. V. Karaseva, D. Eroglu, V. S. Kolosnitsyn, Russ. J. Phys. Chem. A, 2022, 96, 993; DOI: https://doi.org/10.1134/S003602442205017X.

    Article  CAS  Google Scholar 

  47. K. Dokko, D. Watanabe, Y. Ugata, M. L. Thomas, S. Tsuzuki, W. Shinoda, K. Hashimoto, K. Ueno, Y. Umebayashi, M. Watanabe, J. Phys. Chem. B, 2018, 122, 10736; DOI: https://doi.org/10.1021/acs.jpcb.8b09439.

    Article  CAS  PubMed  Google Scholar 

  48. Y. Okamoto, S. Tsuzuki, R. Tatara, K. Ueno, K. Dokko, M. Watanabe, J. Phys. Chem. C, 2020, 124, 4459; DOI: https://doi.org/10.1021/acs.jpcc.9b11458.

    Article  CAS  Google Scholar 

  49. L. S. Dodda, I. Cabeza de Vaca, J. Tirado-Rives, W. L. Jorgensen, Nucleic Acids Res., 2017, 45, W331; DOI: https://doi.org/10.1093/nar/gkx312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. L. S. Dodda, J. S. Vilseck, J. Tirado-Rives, W. J. Jorgensen, J. Phys. Chem. B, 2017, 121, 3864; DOI: https://doi.org/10.1021/acs.jpcb.7b00272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision C, Wallingford (CT), 2016.

  52. S. Nosé, Mol. Phys., 1984, 52, 255; DOI: https://doi.org/10.1007/BF01007978.

    Article  Google Scholar 

  53. W. G. Hoover, Phys. Rev. A, 1985, 31, 1695; DOI: https://doi.org/10.1103/PhysRevA.31.1695.

    Article  CAS  Google Scholar 

  54. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haaket, J. Phys. Chem., 1984, 81, 3684; DOI: https://doi.org/10.1063/1.448118.

    Article  CAS  Google Scholar 

  55. O. M. Becker, Jr., A. D. MacKerell, B. Roux, M. Watanabe, Computational Biochemistry and Biophysics, Marcel Dekker, Inc., New York, 2001, 512 pp.

    Book  Google Scholar 

  56. C. Park, M. Kanduč, R. Chudoba, A. Ronneburg, S. Risse, M. Ballauff, J. Dzubiella, J. Power Sources, 2018, 373, 70; DOI: https://doi.org/10.1016/j.jpowsour.2017.10.081.

    Article  CAS  Google Scholar 

  57. A. A. Gayle, V. E. Somov, Sul’folan: svoystva i primenenie v kachestve selektivnogo rastvoritelya [Sulfolan: Properties and Application as a Selective Solvent], 2nd ed., Khimizdat, Saint Petersburg, 2014, 390 pp. (in Russian).

    Google Scholar 

  58. J. Martinmaa, in The Chemistry of Nonaqueous Solvents, Ed. J. J. Lagowski, Academic Press, New York–London, 1976, p. 40.

  59. M. Della Monica, L. Jannelli, U. Lamanna, J. Phys. Chem., 1968, 72, 1068–1071; DOI: https://doi.org/10.1021/j100849a050.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The calculations were carried out using the equipment of the Chemistry Center for Collective Use of the Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, and the Agidel Regional Center for Collective Use of the Ufa Federal Research Center of the Russian Academy of Sciences.

Funding

The work was carried out within the framework of the Russian state assignment (Topic No. 121111900148-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Yusupova.

Ethics declarations

Animal Testing and Ethics

This paper does not contain descriptions of studies on animals or humans.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to the memory of Academician of the Russian Academy of Sciences G. A. Tolstikov (1933–2013).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 10, pp. 2330–2337, October, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusupova, A.R., Kamalova, G.B., Sheina, L.V. et al. Determination of the phase transition of solutions of lithium salts in sulfolane by the molecular dynamics method. Russ Chem Bull 72, 2330–2337 (2023). https://doi.org/10.1007/s11172-023-4029-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4029-1

Key words

Navigation