Skip to main content
Log in

Porphyrin complexes of transition metals with a large dipole moment as active components of new film electret materials

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

This paper presents the results of a systematic study aimed at searching for organometallic molecules with a large dipole moment in order to create new film electret materials. A number of porphyrin complexes of transition metals, titanium, and vanadium and also complexes with bismuth(iii) iodide with an axial metal—oxygen bond were synthesized. The obtained compounds were identified by physicochemical methods (IR spectroscopy and X-ray photoelectron spectroscopy). The optimized geometry of the complexes, their vibrational spectra, dipole moments, and charge density distributions were evaluated by quantum chemical calculations. The Mulliken population analysis was performed. The maximum dipole moments were found for BiI etioporphyrin II (6.47 D) and BiI 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (3.87 D). The metal ion acts as a transmitter of electron density from nitrogen atoms to the counterion, resulting in an increase in the dipole moment of the molecule as a whole compared to the starting porphyrin ligands. The inclusion of porphyrin complexes under the action of an electric field resulted in the formation of polyvinyl acetate films. Copper layers 100 nm thick were deposited by magnetron sputtering onto both sides of these films. The dielectric properties and the temperature dependences of thermally stimulated depolarization currents of the obtained samples were studied. All samples were found to have a pronounced electret effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Marcus, Ferroelectrics, 1982, 40, 29; DOI: https://doi.org/10.1080/00150198208210593.

    Article  CAS  Google Scholar 

  2. G. M. Sessler, J. Acoust. Soc. Amer., 1981, 70, 1596; DOI: https://doi.org/10.1121/1.387225.

    Article  CAS  Google Scholar 

  3. A. Dhinojwala, G. K. Wong, J. M. Torkelson, Macromolecules, 1993, 26, 5943.

    Article  CAS  Google Scholar 

  4. D. K. Das-Gupta, Proc. “9th. Intern. Symp. Electrets (ISE-9)” (Shanhai, 25–30 September, 1996), Shanhai, 1996, p. 807.

  5. G. Eberle, H. Schmidt, B. Dehlen, W. Eisenmenger, Piezoelectric Polymer Electrets, Electrets, California, 1999, Vol. 2, p. 81.

    Google Scholar 

  6. S. Bauer-Gogonea, R. Gerhard-Multhaupt, Nonlinear Optical Polymer Electrets, Electrets, California, 1999, p. 260.

    Google Scholar 

  7. J. Aimi, C.-T. Lo, H.-C. Wu, Ch.-F. Huang, T. Nakanishi, M. Takeuchi, W.-Ch. Chen, Adv. Electron. Mater., 2016, 2, 1500300; DOI: https://doi.org/10.1002/aelm.201500300.

    Article  Google Scholar 

  8. N. Shi, D. Liu, X. Jin, W. Wu, J. Zhang, M. Yi, L.-H. Xie, F. Guo, L. Yang, Ch. Ou, W. Xue, W. Huang, Organic Electronics, 2017, 49, 218; DOI: https://doi.org/10.1016/j.orgel.2017.05.022.

    Article  CAS  Google Scholar 

  9. Yu. M. Poplavko, Electronic Materials. Principles and Applied Science, Elsevier, Amsterdam—Oxford—Cambridge, 2019, 683 pp.; DOI: https://doi.org/10.1016/B978-0-12-815780-0.09998-9.

    Google Scholar 

  10. Acoustics: Sound Fields, Transducers and Vibration, 2nd ed., Academic Press, London—San-Diego—Cambridge, 2019, 881 pp.; DOI: https://doi.org/10.1016/B978-0-12-815227-0.18001-X.

  11. G. M. Sessler, R. Gerhard-Multhaupt, M. G. Broadhurst, S. Bauer, Electrets, Laplacian Press, MorganHill, CA, 1998.

    Google Scholar 

  12. H. J. Winkelhahn, S. Schrader, D. Neher, G. Wegner, Macromolecules, 1995, 28, 2882; DOI: https://doi.org/10.1021/ma00112a038.

    Article  CAS  Google Scholar 

  13. T. J. Lewis, J. Phys. D: Appl. Phys., 2005, 38, 202; DOI: https://doi.org/10.1088/0022-3727/38/2/004.

    Article  CAS  Google Scholar 

  14. S. Bauer, S. B. Lang, Pyroelectric Polymer Electrets, Electrets, California, 1999, 2, 129.

    Google Scholar 

  15. R. Kressman, G. M. Sessler, P. Gunter, Space-Charge Electrets, Electrets—Laplacian Press, California, 1999, Vol. 2, p. 1.

    Google Scholar 

  16. W. Eisenmenger, Proc. “9th. Intern. Symp. Electrets (ISE-9)”(Shanhai, 25–30 September, 1996), Shanhai, 1996, p. 813.

  17. H. Seggern, M. Hoschkara, M. T. Figueiredo, J. A. Giacometti, L. G. L. Ferreira, Proc. “10th. Intern. Symp. Electrets (ISE-10)” (Athens, Greece, 22–24 September, 199 9), Athens, 1999, p. 639.

  18. T. A. Ageeva, D. V. Golubev, A. S. Gorshkova, A. M. Ionov, O. I. Koifman, R. N. Mozhchi, V. D. Rumyantseva, A. S. Sigov, V. V. Fomichev, Macroheterocycles, 2018, 11, 155; DOI: https://doi.org/10.6060/mhc180171.

    Article  CAS  Google Scholar 

  19. T. A. Ageeva, D. V. Golubev, A. S. Gorshkova, A. M. Ionov, E. V. Kopylova, O. I. Koifman, R. N. Mozhchil, E. P. Rozhkova, V. D. Rumyantseva, A. S. Sigov, V. V. Fomichev, Macroheterocycles, 2019, 12, 148; DOI: https://doi.org/10.6060/mhc190442f.

    Article  CAS  Google Scholar 

  20. D. V. Golubev, V. D. Rumyantseva, V. V. Fomichev, Fine Chemical Technologies, 2017, 12, 26; DOI: https://doi.org/10.32362/2410-6593-2017-12-2-26-30.

    Article  CAS  Google Scholar 

  21. O. I. Nikolaeva, T. A. Ageeva, O. I. Koifman, Russ. Chem. Bull., 2021, 70, 1822; DOI: https://doi.org/10.1007/s11172-021-3288-y.

    Article  CAS  Google Scholar 

  22. A. N. Kiselev, M. A. Lebedev, S. A. Syrbu, E. S. Yurina, Yu. A. Gubarev, N. Sh. Lebedeva, N. A. Belyanina, I. Yu. Shirokova, O. V. Kovalishena, O. I. Koifman, Russ. Chem. Bull., 2022, 71, 2691; DOI: https://doi.org/10.1007/s11172-022-3698-5.

    Article  CAS  Google Scholar 

  23. V. I. Parfenyuk, S. M. Kuzmin, S. A. Chulovskaya, O. I. Koifman, Russ. Chem. Bull., 2022, 71, 1921; DOI: https://doi.org/10.1007/s11172-022-3610-3.

    Article  CAS  Google Scholar 

  24. https://www.updatestar.com/ru/publisher/bruker-optics-inc-26854.

  25. D. N. Laikov, Chem. Phys. Lett., 2005, 416, 116; DOI: https://doi.org/10.1016/j.cplett.2005.09.046.

    Article  CAS  Google Scholar 

  26. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151; DOI: https://doi.org/10.1016/S0009-2614(97)01206-2.

    Article  CAS  Google Scholar 

  27. D. N. Laikov, Yu. A. Ustynyuk, Russ. Chem. Bull., 2005, 54, 820; DOI: https://doi.org/10.1007/s11172-005-0329-x.

    Article  CAS  Google Scholar 

  28. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed., Wiley, New York, 2009, 416 pp.; DOI: https://doi.org/10.1002/9780470405840.

    Google Scholar 

  29. S. Negami, R. J. Ruch, R. R. Myers, J. Colloid Interface Science, 1982, 90, 117; DOI: https://doi.org/10.1016/0021-9797(82)90404-0.

    Article  CAS  Google Scholar 

  30. S. Mashimo, R. Nozaki, S. Yagihara, S. Takeishi, J. Chem. Phys., 1982, 77, 6259; DOI: https://doi.org/10.1063/1.443829.

    Article  CAS  Google Scholar 

  31. R. M. Ahmed, Int. J. Modern Physics B, 2012, 26, 1250159; DOI: https://doi.org/10.1142/S0217979212501597.

    Article  Google Scholar 

  32. A. I. Slutsker, Yu. I. Polikarpov, D. D. Karov, Physics of the Solid State, 2009, 51, 1028; DOI: https://doi.org/10.1134/S1063783409050308.

    Article  Google Scholar 

  33. Transitions and Relaxations in Polymers, Ed. R. F. Boyer, Am. Chem. Soc. Symposium, SpringerLink, Cham, 1966; DOI: https://doi.org/10.1002/polc.5070140102.

  34. J. Hillenbrand, N. Behrendt, V. Altstadt, H.-W. Schmidt, G. M. Sessler, J. Phys. D: Appl. Phys., 2006, 39, 535; DOI: https://doi.org/10.1088/0022-3727/39/3/017.

    Article  CAS  Google Scholar 

  35. J. Hillenbrand, T. Motz, G. M. Sessler, X. Zhang, N. Behrendt, C. Salis-Soglio, D. P. Erhard, V. Altstadt, H.-W. Schmidt, J. Phys. D: Appl. Phys., 2009, 42, 065410; DOI:10.1088/0022-3727/42/6/065410.

    Article  Google Scholar 

  36. R. Gerhard, Proc. 2013 Intern. Conf. Solid Dielectrics «ICSD 2013», June 30–July 4, 2013), Bologna, Italy, 2013, p. 45; DOI: https://doi.org/10.1109/ICSD.2013.6619832.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. A. Ageeva or V. V. Fomichev.

Ethics declarations

The authors declare no competing interests.

Additional information

We are grateful to the Head of the Ion-Plasma Technology Laboratory of the Ivanovo State University of Chemistry and Technology B. L. Gorberg for help in preparing samples using the MIR-2 magnetron sputtering system.

The study was financially supported by the Russian Foundation for Basic Research (Project No. 20-03-00244) and the Ministry of Science and Higher Education of the Russian Federation (Project Nos 0706-2020-0019 and FSFZ-2023-0004) using the equipment of the Center for Collective Use of the MIREA — Russian Technological University and the Center for Collective Use of the Ivanovo State University of Chemistry and Technology (with the financial support of the Ministry of Science and Higher Education of the Russian Federation, agreement No. 075-15-2021-671).

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 9, pp. 2070–2082, September, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageeva, T.A., Bush, A.A., Golubev, D.V. et al. Porphyrin complexes of transition metals with a large dipole moment as active components of new film electret materials. Russ Chem Bull 72, 2070–2082 (2023). https://doi.org/10.1007/s11172-023-4001-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4001-0

Key words

Navigation