Skip to main content
Log in

Biphotochromic dyads based on aryl-8-oxyquinolylethylenes with a decamethylene bridge: the synthesis, structure, spectral, and luminescent properties

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A method for the synthesis of symmetric biphotochromic dyads from 8-hydroxyquin-aldine, arylaldehydes, and 1,10-dibromodecane was developed. The dyads comprise two identical arylvinyl-8-oxyquinoline fragments (Ar = Ph, anthracen-9-yl, pyren-1-yl) covalently linked by a decamethylene chain. The structure of the dyads was studied in terms of the density functional theory using the M06-2X hybrid functional. Calculations predict the existence of dyad conformers where n-stacking interaction promotes the approach of terminal photochromes to distances sufficient for the [2 + 2]-photocycloaddition reaction to occur. The luminescent properties of the dyads were studied. The dyads with phenyl and pyrenyl groups were found to be relatively good luminophores with the fluorescence quantum yields φfl ⩾ 0.15 (cf. a low φfl value of 0.022 for the dyad bearing the anthryl group).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Z. Shirinian, D. V. Lonshakov, A. G. Lvov, M. M. Krayushkin, Russ. Chem. Rev., 2013, 82, 511; DOI: https://doi.org/10.1070/RC2013v082n06ABEH004339.

    Article  Google Scholar 

  2. E. V. Nosova, S. Achelle, G. N. Lipunova, V. N. Charushin, O. N. Chupakhin, Russ. Chem. Rev., 2019, 88, 1128; DOI: https://doi.org/10.1070/RCR4887.

    Article  CAS  Google Scholar 

  3. C. Yun, J. You, J. Kim, J. Huh, E. Kim, J. Photochem. Photobiol. C: Photochem. Rev., 2009, 10, 111; DOI: https://doi.org/10.1016/j.jphotochemrev.2009.05.002.

    Article  CAS  Google Scholar 

  4. J. Cusido, E. Deniz, F. M. Raymo, Eur. J. Org. Chem., 2009, 2031; DOI: https://doi.org/10.1002/ejoc.200801244.

  5. T. Fukaminato, S. Ishida, R. Métivier, NPG Asia Materials, 2018, 10, 859; DOI: https://doi.org/10.1038/s41427-018-0075-9.

    Article  CAS  Google Scholar 

  6. A. F. Khasanov, D. S. Kopchuk, I. L. Nikonov, O. S. Taniya, I. S. Kovalev, G. V. Zyryanov, V. L. Rusinov, O. N. Chupakhin, Russ. Chem. Bull., 2021, 70, 999; DOI: https://doi.org/10.1007/s11172-021-3179-2.

    Article  CAS  Google Scholar 

  7. L. S. Hung, C. H. Chen, Mater. Sci. Eng., 2002, R39, 143; DOI: https://doi.org/10.1016/S0927-796X(02)00093-1.

    Article  CAS  Google Scholar 

  8. C. H. Chen, J. Shi, Coord. Chem. Rev., 1998, 171, 161; DOI: https://doi.org/10.1016/S0010-8545(98)90027-3.

    Article  CAS  Google Scholar 

  9. K. Ch. Song, J. S. Kim, S. M. Park, K.-Ch. Chung, S. Ahn, S.-K. Chang, Org. Lett., 2006, 8, 3413; DOI: https://doi.org/10.1021/ol060788b.

    Article  CAS  PubMed  Google Scholar 

  10. Y.-W. Shi, M.-M. Shi, J.-C. Huang, H.-Z. Chen, M. Wang, X.-D. Liu, Y.-G. Ma, H. Xu, B. Yang, Chem. Commun., 2006, 1941; DOI: https://doi.org/10.1039/B516757D.

  11. J. Liang, Q. Wei, Ch. Qiao, Zh. Xia, G. Ye, S. Chen, Chin. J. Chem., 2012, 30, 715; DOI: https://doi.org/10.1002/cjoc.201280017.

    Article  CAS  Google Scholar 

  12. S. Sehlangia, M. Devi, N. Nayak, N. Garg, A. Dhir, C. P. Pradeep, ChemistrySelect, 2020, 5, 5429; DOI: https://doi.org/10.1002/slct.202000674.

    Article  CAS  Google Scholar 

  13. M. Hadavand, M. R. Jafari, F. Pakpour, D. Ghanbari, J. Nanopart. Res., 2021, 23, 61; DOI: https://doi.org/10.1007/s11051-021-05174-9.

    Article  CAS  Google Scholar 

  14. W.-G. Jia, X.-T. Zhi, X.-D. Li, J.-P. Zhou, R. Zhong, H. Yu, R. Lee, Inorg. Chem., 2021, 60, 4313; DOI: https://doi.org/10.1021/acs.inorgchem.1c0005.

    Article  CAS  PubMed  Google Scholar 

  15. O. V. Serdyuk, I. V. Evseenko, G. A. Dushenko, Yu. V. Revinskii, I. E. Mihailov, Russ. J. Org. Chem., 2012, 48, 78; DOI: https://doi.org/10.1134/S1070428012010113.

    Article  CAS  Google Scholar 

  16. O. V. Chashchikhin, M. F. Budyka, T. N. Gavrishova, P. A. Nikulin, Chem. Phys. Lett., 2018, 696, 135; DOI: https://doi.org/10.1016/j.cplett.2018.02.055.

    Article  CAS  Google Scholar 

  17. Yu. P. Kovtun, Ya. A. Prostota, A. I. Tolmachev, Zh. nauch. prikl. fotografi i [J. Sci. Appl. Photography Cinematography], 2000, 45, 51 (in Russian).

    CAS  Google Scholar 

  18. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Li, Nanotechnol. Russ., 2012, 7, 280; DOI: https://doi.org/10.1134/S1995078012030032.

    Article  Google Scholar 

  19. M. F. Budyka, Russ. Chem. Rev., 2017, 86, 181; DOI: 10.1070/RCR4657.

    Article  CAS  Google Scholar 

  20. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Li, High Energy Chem., 2008, 42, 446; DOI: https://doi.org/10.1134/S0018143908060052.

    Article  CAS  Google Scholar 

  21. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Li, High Energy Chem., 2014, 48, 185; DOI: https://doi.org/10.1134/S0018143914030047.

    Article  CAS  Google Scholar 

  22. M. F. Budyka, V. M. Li, Photochem. Photobiol. Sci., 2018, 17, 213; DOI: https://doi.org/10.1039/C7PP00359E.

    Article  CAS  PubMed  Google Scholar 

  23. M. F. Budyka, V. M. Li, Russ. Chem. Bull., 2021, 70, 1665; DOI: https://doi.org/10.1007/s11172-021-3268-2.

    Article  CAS  Google Scholar 

  24. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Lee, High Energy Chem., 2012, 46, 309; DOI: https://doi.org/10.1134/S0018143912040054.

    Article  CAS  Google Scholar 

  25. M. F. Budyka, T. N. Gavrishova, N. I. Potashova, A. V. Chernyak, Mendeleev Commun., 2015, 25, 106; DOI: https://doi.org/10.1016/j.mencom.2015.03.008.

    Article  CAS  Google Scholar 

  26. E. N. Ushakov, A. I. Vedernikov, N. A. Lobova, S. N. Dmitrieva, L. G. Kuz’mina, A. A. Moiseeva, J. A. K. Howard, M. V. Alfimov, S. P. Gromov, J. Phys. Chem. A, 2015, 119, 13025; DOI: https://doi.org/10.1021/acs.jpca.5b10758.

    Article  CAS  PubMed  Google Scholar 

  27. E. N. Ushakov, S. P. Gromov, Russ. Chem. Rev., 2015, 84, 787; DOI: https://doi.org/10.1070/RCR4514.

    Article  CAS  Google Scholar 

  28. X. Ling, H. Zeng, Youji Huaxue, 2009, 29, 742.

    Google Scholar 

  29. Xi. Ouyang, H. Zeng, W. Ji, J. Phys. Chem. B, 2009, 113, 14565; DOI: https://doi.org/10.1021/jp905390q.

    Article  CAS  PubMed  Google Scholar 

  30. M. Normand-Bayle, C. Bénard, F. Zouhiri, J.-F. Mouscadet, H. Leh, C.-M. Thomas, G. Mbemba, D. Desmaële, J. d’Angelo, Bioorg. Med. Chem. Lett., 2005, 15, 4019; DOI: https://doi.org/10.1016/j.bmcl.2005.06.036.

    Article  CAS  PubMed  Google Scholar 

  31. Ya. Huo, Z. Li, Ju. Li, T. Kong, H. Liang, G. Guo, Ch. Pan, S. Wang, Pat. CN 106496117, Chem. Abstrs, 2017, 166, 362598.

    Google Scholar 

  32. Ji. Xiong, Z. Li, Ji. Tan, Sh. Ji, Ji. Sun, Xi. Li, Ya. Huo, Analyst, 2018, 143, 4870; DOI: https://doi.org/10.1039/C8AN00940F.

    Article  CAS  PubMed  Google Scholar 

  33. Zh. Wang, Ya. Wang, Bo Wang, W. Li, L. Huang, Xi. Li, J. Med. Chem., 2015, 58, 8616; DOI: https://doi.org/10.1021/jm401047q.

    Article  CAS  PubMed  Google Scholar 

  34. F.-S. Chang, W. Chen, Ch. Wang, Ch.-Ch. Tzeng, Y.-L. Chen, Bioorg. Med. Chem., 2010, 18, 124; DOI: https://doi.org/10.1016/j.bmc.2009.11.012.

    Article  CAS  PubMed  Google Scholar 

  35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.

    Google Scholar 

  36. U. Mazzucato, F. Momicchioli, Chem. Rev., 1991, 91, 1679; DOI: https://doi.org/10.1021/cr00008a002.

    Article  CAS  Google Scholar 

  37. M. F. Budyka, I. V. Oshkin, Int. J. Quantum Chem., 2011, 111, 3673; DOI: https://doi.org/10.1002/qua.22797.

    CAS  Google Scholar 

  38. M. F. Budyka, T. N. Gavrishova, V. M. Li, S. A. Dozmorov, High Energy Chem., 2019, 53, 5; DOI: https://doi.org/10.1134/S0018143919010028.

    Article  CAS  Google Scholar 

  39. J. Catalan, Chem. Phys. Lett., 2006, 421, 134; DOI: https://doi.org/10.1016/j.cplett.2006.01.077.

    Article  CAS  Google Scholar 

  40. J. W. Chung, Y. You, H. S. Huh, B.-K. An, S.-J. Yoon, S. H. Kim, S. W. Lee, S. Y. Park, J. Am. Chem. Soc., 2009, 131, 8163; DOI: https://doi.org/10.1021/ja900803d.

    Article  CAS  PubMed  Google Scholar 

  41. M. F. Budyka, Russ. Chem. Rev., 2012, 81, 477; DOI: https://doi.org/10.1070/RC2012v081n06ABEH004274.

    Article  CAS  Google Scholar 

  42. G. Galiazzo, P. Bortolus, G. Gennari, Gazz. Chim. Ital., 1990, 120, 581.

    CAS  Google Scholar 

  43. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Li, V. Yu. Gak, I. A. Grineva, High Energy Chem., 2018, 52, 222; DOI: https://doi.org/10.1134/S0018143918030062.

    Article  CAS  Google Scholar 

  44. V. Kozlovski, V. Brusov, I. Sulimenkov, A. Pikhtelev, A. Dodonov, Rapid Commun. Mass Spectrom., 2004, 18, 780; DOI: https://doi.org/10.1002/rcm.1405.

    Article  CAS  PubMed  Google Scholar 

  45. H.-D. Becker, Chem. Rev., 1993, 93, 145; DOI: https://doi.org/10.1021/cr00017a008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Gavrishova.

Ethics declarations

The authors declare no competing interests.

Additional information

This work was performed using facilities at the Multiple-User Analytical Center, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences.

This work was carried out within the framework of the State Assignment (State Reg. No. AAAA-A19-119070790003-7).

No human or animal subjects were used in this research.

Published in Russian in Izvestiya AkademiiNauk. Seriya Khimicheskaya, Vol. 72, No. 9, pp. 2013–2024, September, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budyka, M.F., Gavrishova, T.N., Li, V.M. et al. Biphotochromic dyads based on aryl-8-oxyquinolylethylenes with a decamethylene bridge: the synthesis, structure, spectral, and luminescent properties. Russ Chem Bull 72, 2013–2024 (2023). https://doi.org/10.1007/s11172-023-3994-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3994-8

Key words

Navigation