Skip to main content
Log in

Synthesis and antinociceptive activity of nitriles, esters, and amides of 2-amino-1-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-4-oxo-5-(2-oxo-2-arylethylidene)-4,5-dihydro-1H-pyrrole-3-carboxylic acids

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Synthesis of nitriles, esters, amides of the substituted 2-amino-1-(4,5,6,7-tetra-hydrobenzo[b]thiophen-2-yl)-4-oxo-5-(2-oxo-2-arylethylidene)-4,5-dihydro-1H-pyrrole-3-carboxylic acids bearing the nitrile group at the thiophene ring by the reaction of the substituted 3-(3-cyanothiophen-2-yl)iminofuran-2(3H)-ones with the appropriate cyanoacetic acid derivatives was developed. The synthesized compounds demonstrated pronounced antinociceptive activity and low toxicity (toxicity class V of practically nontoxic substances).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G. Bouz, M. Doležal, Pharmaceuticals, 2021, 14, 1312; DOI: https://doi.org/10.3390/ph14121312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. L. Huang, J. Yang, T. Wang, J. Gao, D. Xu, J. Nanobiotechnol., 2022, 20, 49; DOI: https://doi.org/10.1186/s12951-022-01257-4.

    Article  CAS  Google Scholar 

  3. D. Jhinjharia, A. C. Kaushik, S. Sahi, Advances in Structure-based Drug Desingn, in Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences, Ch. 3, Academic Press, London, 2021, 55 pp.; DOI: https://doi.org/10.1016/B978-0-12-821748-1.00009-9.

    Google Scholar 

  4. K. E. Samy, C. Gampe, Bioorg. Med. Chem. Lett., 2022, 62, 128627; DOI: https://doi.org/10.1016/j.bmcl.2022.128627.

    Article  CAS  PubMed  Google Scholar 

  5. R. Zhao, J. Fu, L. Zhu, Y. Chen, B. Liu, J. Hematol. Oncol., 2022, 15, 14; DOI: https://doi.org/10.1186/s13045-022-01230-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D. D. Xuan, Mini-Rev. Org. Chem., 2021, 18, 110; DOI: https://doi.org/10.2174/1570193x17999200507095224.

    Article  CAS  Google Scholar 

  7. R. Shah, P. K. Verma, BMC Chem., 2019, 13, 54; DOI: https://doi.org/10.1186/s13065-019-0569-8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. K. Bozorov, L. F. Nie, J. Zhao, H. A. Aisa, Eur. J. Med. Chem., 2017, 140, 465; DOI: https://doi.org/10.1016/j.ejmech.2017.09.039.

    Article  CAS  PubMed  Google Scholar 

  9. V. Duvauchelle, P. Meffre, Z. Benfodda, Eur. J. Med. Chem., 2022, 238, 114502; DOI: https://doi.org/10.1016/j.ejmech.2022.114502.

    Article  CAS  PubMed  Google Scholar 

  10. P. S. Fogue, P. K. Lunga, E. S. Fondjo, J. De Dieu Tamokou, B. Thaddee, J. Tsemeugne, A. T. Tchapi, J. R. Kuiate, Mycoses, 2012, 55, 310; DOI: https://doi.org/10.1111/j.1439-0507.2011.02089.x.

    Article  CAS  PubMed  Google Scholar 

  11. S. I. Panchamukhi, A. K. Mohammed Iqbal, A. Y. Khan, M. B. Kalashetti, I. M. Khazi, Pharm. Chem. J., 2011, 44, 694; DOI: https://doi.org/10.1007/s11094-011-0545-7.

    Article  CAS  Google Scholar 

  12. O. D. Vlasova, K. Yu. Krolenko, M. A. Nechayev, P. E. Shynkarenko, V. I. Kabachnyy, S. V. Vlasov, Chem. Heterocycl. Compd., 2019, 55, 184; DOI: https://doi.org/10.1007/s10593-019-02437-1.

    Article  CAS  Google Scholar 

  13. A. Rossetti, N. Bono, G. Candiani, F. Meneghetti, G. Roda, A. Sacchetti, Chem. Biodiversity, 2019, 16, 1900097; DOI: https://doi.org/10.1002/cbdv.201900097.

    Google Scholar 

  14. D. Puthran, B. Poojary, N. Purushotham, N. Harikrishna, S. G. Nayak, V. Kamat, Heliyon, 2019, 5, e02233; DOI: https://doi.org/10.1016/j.heliyon.2019.e02233.

    Article  PubMed  PubMed Central  Google Scholar 

  15. S. B. Baravkar, M. A. Wagh, L. U. Nawale, A. S. Choudhari, S. Bhansali, D. Sarkar, G. J. Sanjayan, ChemistrySelect, 2019, 4, 2851; DOI: https://doi.org/10.1002/slct.201803370.

    Article  CAS  Google Scholar 

  16. M. K. A. Regal, S. S. Shaban, S. A. El-Metwally. J. Heterocycl. Chem., 2018, 56, 226; DOI: https://doi.org/10.1002/jhet.3399.

    Article  Google Scholar 

  17. J. A. S. Mulla, M. I. A. Khazi, S. I. Panchamukhi, Y. D. Gong, I. A. M. Khazi. Med. Chem. Res., 2014, 23, 3253; DOI: https://doi.org/10.1007/s00044-013-0900-1.

    Article  Google Scholar 

  18. A. I. Siutkina, S. V. Chashchina, R. R. Makhmudov, I. A. Kizimova, S. A. Shipilovskikh, N. M. Igidov, Russ. J. Org. Chem., 2021, 57, 1874; DOI: https://doi.org/10.1134/s1070428021110105.

    Article  CAS  Google Scholar 

  19. S. G. Nayak, B. Poojary, V. Kamat, Arch. Pharm., 2020, 353, e2000103; DOI: https://doi.org/10.1002/ardp.202000103.

    Article  Google Scholar 

  20. S. G. Nayak, B. Poojary, V. Kamat, D. Puthran, J. Chin. Chem. Soc., 2021, 68, 1116; DOI: https://doi.org/10.1002/jccs.202000166.

    Article  CAS  Google Scholar 

  21. J. Thomas, A. Jecic, E. Vanstreels, L. van Berckelaer, R. Romagnoli, W. Dehaen, S. Liekens, J. Balzarini, Eur. J. Med. Chem., 2017, 132, 219; DOI: https://doi.org/10.1016/j.ejmech.2017.03.044.

    Article  CAS  PubMed  Google Scholar 

  22. A. El-Mekabaty, H. M. Awad, J. Heterocycl. Chem., 2020, 57, 1123; DOI: https://doi.org/10.1002/jhet.3849.

    Article  CAS  Google Scholar 

  23. A. V. Kovtun, S. V. Tokarieva, S. A. Varenichenko, O. K. Farat, A. V. Mazepa, V. V. Dotsenko, V. I. Markov, Biopolym. Cell., 2020, 36, 279; DOI: https://doi.org/10.7124/bc.000A2C.

    Article  Google Scholar 

  24. Yu. O. Sharavyeva, A. I. Siutkina, S. V. Chashchina, V. V. Novikova, R. R Makhmudov, S. A. Shipilovskikh, Russ. Chem. Bull., 2022, 71, 538; DOI: https://doi.org/10.1007/s11172-022-3445-y.

    Article  CAS  Google Scholar 

  25. Z. Wang, J. Tang, C. E. Salomon, C. D. Dries, R. Vince, Bioorg. Med. Chem., 2010, 18, 4202; DOI: https://doi.org/10.1016/j.bmc.2010.05.004.

    Article  CAS  PubMed  Google Scholar 

  26. I. N. Cvijetić, T. Z. Verbić, P. Ernesto de Resende, P. Stapleton, S. Gibbons, I. O. Juranić, B. J. Drakulić, M. Zloh, Eur. J. Med. Chem., 2018, 143, 1474; DOI: https://doi.org/10.1016/j.ejmech.2017.10.045.

    Article  PubMed  Google Scholar 

  27. S. N. Igidov, A. Yu. Turyshev, R. R. Makhmudov, D. A. Shipilovskikh, M. V. Dmitriev, O. V. Zvereva, P. S. Silaichev, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2023, 93, 253; DOI: https://doi.org/10.1134/S1070363223020044.

    Article  CAS  Google Scholar 

  28. D. V. Lipin, E. I. Denisova, D. A. Shipilovskikh, R. R. Makhmudov, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Org. Chem., 2023, 59, 1; DOI: https://doi.org/10.31857/S051474922304.

    Article  Google Scholar 

  29. I. A. Kizimova, N. M. Igidov, M. A. Kiselev, D. V. Ivanov, A. I. Syutkina, Russ. J. Gen. Chem., 2020, 90, 815; DOI: https://doi.org/10.1134/s1070363220050096.

    Article  CAS  Google Scholar 

  30. A. I. Siutkina, Yu. O. Sharavyeva, S. V. Chashchina, S. A. Shipilovskikh, N. M. Igidov, Russ. Chem. Bull., 2022, 71, 496, DOI: https://doi.org/10.1007/s11172-022-3439-9.

    Article  CAS  Google Scholar 

  31. S. N. Igidov, A. Yu. Turyshev, R. R. Makhmudov, D. A. Shipilovskikh, M. V. Dmitriev, O. V. Zvereva, P. S. Silaichev, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2023, 93, 188; DOI:https://doi.org/10.31857/S0044460X2302004X.

    Article  Google Scholar 

  32. S. A. Shipilovskikh, D. A. Shipilovskikh, A. E. Rubtsov, Russ. J. Org. Chem., 2017, 53, 137; DOI: https://doi.org/10.1134/S1070428017010274.

    Article  CAS  Google Scholar 

  33. S. A. Shipilovskikh, A. E. Rubtsov, J. Org. Chem., 2019, 84, 15788; DOI: https://doi.org/10.1021/acs.joc.9b00711.

    Article  CAS  PubMed  Google Scholar 

  34. I. A. Gorbunova, D. A. Shipilovskikh, A. E. Rubtsov, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2021, 91, 1623; DOI: https://doi.org/10.1134/S1070363221090048.

    Article  Google Scholar 

  35. E. I. Denisova, D. V. Lipin, K. Yu. Parkhoma, I. O. Devyatkin, D. A. Shipilovskikh, S. V. Chashchina, R. R. Makhmudov, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Org. Chem., 2021, 57, 1955; DOI: https://doi.org/10.1134/S1070428021120083.

    Article  CAS  Google Scholar 

  36. D. V. Lipin, E. I. Denisova, I. O. Devyatkin, E. A. Okoneshnikova, D. A. Shipilovskikh, R. R. Makhmudov, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2021, 91, 2469; DOI: https://doi.org/10.1134/S1070363221120161.

    Article  CAS  Google Scholar 

  37. S. N. Igidov, A. Yu. Turyshev, R. R. Makhmudov, D. A. Shipilovskikh, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2022, 92, 1629; DOI: https://doi.org/10.1134/S1070363222090067.

    Article  CAS  Google Scholar 

  38. D. V. Lipin, E. I. Denisova, D. A. Shipilovskikh, R. R. Makhmudov, N. M. Igidov, S. A. Shipilovskikh, Russ. J. Org. Chem., 2022, 58, 1354; DOI: https://doi.org/10.1134/S1070428022120041.

    Article  Google Scholar 

  39. I. A. Gorbunova, V. M. Shadrin, N. A. Pulina, V. V. Novikova, S. S. Dubrovina, D. A. Shipilovskikh, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2023, 93, 9; DOI: https://doi.org/10.1134/S1070363223010024.

    Article  Google Scholar 

  40. Yu. O. Sharavyeva, A. I. Siutkina, S. V. Chashchina, V. V. Novikova, R. R. Makhmudov, S. A. Shipilovskikh, Russ. Chem. Bull., 2022, 71, 538; DOI: https://doi.org/10.1007/s11172022-3445-y.

    Article  CAS  Google Scholar 

  41. I. A. Gorbunova, Yu. O. Sharavyeva, R. R. Makhmudov, D. A. Shipilovskikh, V. M. Shadrin, N. A. Pulina, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2022, 92, 1899; DOI: https://doi.org/10.1134/S1070363222100048.

    Article  CAS  Google Scholar 

  42. D. B. Lipin, D. A. Kozlov, V. M. Shadrin, K. Yu. Parkhoma, A. V. Starkova, D. A. Shipilovskikh, N. A. Pulina, S. A. Shipilovskikh, Russ. J. Org. Chem., 2023, 59, 1587.

    Article  Google Scholar 

  43. N. A. Zhestkij, E. V. Gunina, S. P. Fisenko, A. E. Rubtsov, D. A. Shipilovskikh, V. A. Milichko, S. A. Shipilovskikh, Chimica Techno Acta, 2021, 8, No. 4, 20218411; DOI: https://doi.org/10.15826/chimtech.2021.8.4.11.

    Article  CAS  Google Scholar 

  44. E. Gunina, N. Zhestkij, S. Bachinin, S. P. Fisenko, D. A. Shipilovskikh, V. A. Milichko, S. A. Shipilovskikh, Photonics Nanostruct., 2022, 48, 1569–4410; DOI: https://doi.org/10.1016/j.photonics.2021.100990.

    Article  Google Scholar 

  45. A. Rogova, I. A. Gorbunova, T. E. Karpov, R. Yu. Sidorov, A. E. Rubtsov, D. A. Shipilovskikh, A. R. Muslimov, M. V. Zyuzin, A. S. Timin, S. A. Shipilovskikh, J. Med. Chem., 2023, 115325; DOI: https://doi.org/10.1016/j.ejmech.2023.115325.

  46. I. A. Gorbunova, V. M. Shadrin, N. A. Pulina, V. V. Novikova, S. S. Dubrovina, D. A. Shipilovskikh, S. A. Shipilovskikh, Russ. J. Gen. Chem., 2023, 93, 9; DOI: https://doi.org/10.31857/S0044460X2301.

    Article  Google Scholar 

  47. N. B. Eddy, D. J. Leimbach, J. Pharmacol. Exp. Ther., 1953, 107, 358.

    Google Scholar 

  48. A. N. Mironov, Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh veshchestv [Guidance for Conducting Preclinical Studies of Drugs], Grif and K, Moscow, 2012, 509 pp. (in Russian).

    Google Scholar 

  49. G. N. Pershin, Metody eksperimental’noi khimioterapii [Methods of Experimental Chemotherapy], Meditsina, Moscow, 1971, 502 pp. (in Russian).

    Google Scholar 

  50. N. F. Izmerov, I. V. Sanotskii, K. K. Sidorov, Parametry toksikometrii promyshlennykh yadov pri odnokratnom vozdeistvii (spravochnik) [Parameters of Toxicometry of Industrial Poisons with a Single Exposure: (Reference Book)], Meditsina, Moscow, 1977, 196 pp. (in Russian).

    Google Scholar 

  51. M. L. Belen’kii, Elementy kolichestvennoi otsenki farmakologicheskogo effecta [Elements of Quantitative Assessment of Pharmacological Effect, Medgiz, Leningrad, 1963, 146 pp. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shipilovskikh.

Ethics declarations

The authors declare no competing interests.

Additional information

This study was performed under financial support of the “Rational Use of the Earth Interior” Perm Scientific Educational Center 2023.

The experiments involving animals were performed in accordance with all applicable international, national, and institutional guidelines for the care and use of the laboratory animals.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 8, pp. 1913–1920, August, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipin, D.V., Parkhoma, K.Y., Shadrin, V.M. et al. Synthesis and antinociceptive activity of nitriles, esters, and amides of 2-amino-1-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-4-oxo-5-(2-oxo-2-arylethylidene)-4,5-dihydro-1H-pyrrole-3-carboxylic acids. Russ Chem Bull 72, 1913–1920 (2023). https://doi.org/10.1007/s11172-023-3976-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3976-x

Key words

Navigation