Skip to main content
Log in

Host-aided pH-controlled substitution reaction of aryl diazonium salts and sodium azide

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Aided by a host molecule, cucurbit[6]uril (CB[6]), pH-controlled substitution reaction between 4-methoxybenzenediazonium tetrafluoroborate and sodium azide was developed. The interaction of CB[6] and aryl diazonium salt was investigated by UV-Vis absorption spectroscopy, mass spectrometry, and 1H NMR titration. The results indicated that under strong acidic conditions (pH < 1) CB[6] and aryl diazonium salt form a 1 : 1 inclusion complex. When the pH value was adjusted to ~3, aryl diazonium salt is gradually released from the supramolecular assemblies and reacted with NaN3. When the pH of the reaction solution was lowered to pH < 1.0, aryl diazonium salt and CB[6] again formed a supra-molecular assemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem., Int. Ed., 2005, 44, 4844; DOI: https://doi.org/10.1002/anie.200460675.

    Article  CAS  Google Scholar 

  2. S. J. Barrow, S. Kasera, M. J. Rowland, J. del Barrio, O. A. Scherman, Chem. Rev., 2015, 115, 12320; DOI: https://doi.org/10.1021/acs.chemrev.5b00341.

    Article  CAS  PubMed  Google Scholar 

  3. A. E. Kaifer, Acc. Chem. Res., 2014, 47, 2160; DOI: https://doi.org/10.1021/ar5001204.

    Article  CAS  PubMed  Google Scholar 

  4. Z. Miskolczy, M. Megyesi, G. Tárkányi, R. Mizsei, L. Biczók, Org. Biomol. Chem., 2011, 9, 1061; DOI: https://doi.org/10.1039/C0OB00666A.

    Article  CAS  PubMed  Google Scholar 

  5. N. Basílio, V. Petrov, F. Pina, ChemPlusChem, 2015, 80, 1779; DOI: https://doi.org/10.1002/cplu.201500304.

    Article  PubMed  Google Scholar 

  6. W. Xu, B. Yang, T. J. Prior, B. Bian, X. Xiao, Z. Tao, C. Redshaw, Chem. Asian J., 2019, 14, 235; DOI: https://doi.org/10.1002/asia.201801498.

    Article  CAS  PubMed  Google Scholar 

  7. H. Ren, Z. Huang, H. Yang, H. Xu, X. Zhang, ChemPhysChem, 2015, 16, 523; DOI: https://doi.org/10.1002/cphc.201402840.

    Article  CAS  PubMed  Google Scholar 

  8. R. Gao, W. X. Yang, J. C. Xu, L. Y. Chen, J. Yang, B. X. Wang, B. Yang, ChemistrySelect, 2021, 6, 1357; DOI: https://doi.org/10.1002/slct.202004685.

    Article  CAS  Google Scholar 

  9. I. V. Andrienko, E. A. Kovalenko, D. G. Samsonenko, V. P. Fedin, Russ. Chem. Bull., 2020, 69, 2113; DOI: https://doi.org/10.1007/s11172-020-3008-z.

    Article  CAS  Google Scholar 

  10. D. Shetty, J. K. Khedkar, K. M. Parkad, K. Kim, Chem. Soc. Rev., 2015, 44, 8747; DOI: https://doi.org/10.1039/C5CS00631G.

    Article  CAS  PubMed  Google Scholar 

  11. B. H. Tang, J. T. Zhao, J. F. Xu, X. Zhang, Chem. Eur. J., 2020, 67, 15446; DOI: https://doi.org/10.1002/chem.202003897.

    Article  Google Scholar 

  12. W. J. Gong, J. Ma, Z. Y. Zhao, F. Gao, F. Liang, H. J. Zhang, S. M. Liu, J. Org. Chem., 2017, 82, 3298; DOI: https://doi.org/10.1021/acs.joc.6b02971.

    Article  CAS  PubMed  Google Scholar 

  13. L. S. Atabekyan, V. G. Avakyan, V. P. Markelov, T. A. Svyatoslavskaya, N. L. Svyatoslavsky, A. K. Chibisov, Russ. Chem. Bull., 2020, 69, 971; DOI: https://doi.org/10.1007/s11172-020-2857-9.

    Article  CAS  Google Scholar 

  14. L. S. Atabekyan, N. A. Aleksandrova, V. G. Avakyan, S. P. Gromov, Russ. Chem. Bull., 2019, 68, 1684; DOI: https://doi.org/10.1007/s11172-019-2612-2.

    Article  CAS  Google Scholar 

  15. L. Liu, N. Nouvel, O. A. Scherman, Chem. Commun., 2009, 3243; DOI: https://doi.org/10.1039/B903033F.

  16. S. Z. Vatsadze, A. L. Maximov, V. I. Bukhtiyarov, Dokl. Chem., 2022, 502, 1; DOI: https://doi.org/10.1134/S0012500822010013.

    Article  CAS  Google Scholar 

  17. Z. Y. Zhang, Y. Chen, Y. Liu, Angew. Chem., Int. Ed., 2019, 58, 6028; DOI: https://doi.org/10.1002/anie.201901882.

    Article  CAS  Google Scholar 

  18. F. G. Zhang, Z. Chen, C. W. Cheung, J. A. Ma, Chin. J. Chem., 2020, 38, 1132; DOI: https://doi.org/10.1002/cjoc.202000270.

    Article  CAS  Google Scholar 

  19. S. S. Babu, P. Muthuraja, P. Yadav, P. Gopinath, Adv. Synth. Catal., 2021, 363, 1782; DOI: https://doi.org/10.1002/adsc.202100136.

    Article  CAS  Google Scholar 

  20. J. Li, H. W. Shi, S. Zhang, M. Rudolph, F. Rominger, A. S. K. Hashmi, Org. Lett., 2021, 23, 7713; DOI: https://doi.org/10.1021/acs.orglett.1c02621.

    Article  CAS  PubMed  Google Scholar 

  21. M. C. Wang, F. Q. Bi, G. Zhang, M. Xu, Z. X. Ge, Z. Q. Chen, C. Xu, Z. C. Qi, Huozhayao Xuebao [Chin. J. Explos. Propellants], 2012, 35, 56.

    CAS  Google Scholar 

  22. Y. Zhu, K. W. Ding, C. Xiao, T. G. Li, J. H. Bu, W. Liu, S. S. Guo, Z. H. Ge, Huozhayao Xuebao [Chin. J. Explos. Pro pellants], 2021, 44, 21; DOI: https://doi.org/10.14077/j.issn.1007-7812.201911017.

    Google Scholar 

  23. X. Y. Sun, Y. X. Zhao, Bopuxue Zazhi [Chin. J. Magn. Reson.], 1993, 10, 131.

    CAS  Google Scholar 

  24. D. H. Wang, S. H. Liu, G. Z. Xu, X. Y. Sun, Y. X. Zhao, Acta Chim. Sin., 1985, 43, 140.

    CAS  Google Scholar 

  25. Z. Xu, X. Y. Sun, Y. X. Zhao, G. Z. Xu, X. Y. Liang, M. Y. Zhang, Zhipu Xuebao [J. Chin. Mass Spectrom. Soc.], 1991, 12, 70.

    Google Scholar 

  26. Y. X. Zhao, X. Y. Sun, Q. R. Li, Youji Huaxue [Chin. J. Org. Chem.], 1992, 12, 172.

    CAS  Google Scholar 

  27. G. Z. Xu, Y. X. Zhao, X. Y. Sun, Y. Liu, X. Q. Song, Wuli Huaxue Xuebao [Acta Phys.-Chim. Sin.], 1985, 1, 329.

    CAS  Google Scholar 

  28. S. M. Liu, X. J. Wu, F. Liang, J. H. Yao, C. T. Wu, Gaodeng Xuexiao Huaxue Xuebao [Chem. J. Chin. Univ.], 2004, 25, 2038; http://www.cjcu.jlu.edu.cn/EN/Y2004/V25/I11/2038.

    CAS  Google Scholar 

  29. H. X. Xu, Q. C. Wang, Chin. Chem. Lett., 2019, 30, 337; DOI: https://doi.org/10.1016/j.cclet.2018.03.014.

    Article  CAS  Google Scholar 

  30. Y. Zhang, G. Tu, W. Cao, Supramol. Chem., 2002, 14, 473; DOI: https://doi.org/10.1080/1061027021000002242.

    Article  CAS  Google Scholar 

  31. Y. J. Zhang, G. Z. Tu, W. X. Cao, Gaodeng Xuexiao Huaxue Xuebao [Chem. J. Chin. Univ.], 2003, 24, 151.

    CAS  Google Scholar 

  32. F. Mo, D. Qiu, Y. Zhang, J. Wang, Acc. Chem. Res., 2018, 51, 496; DOI: https://doi.org/10.1021/acs.accounts.7b00566.

    Article  CAS  PubMed  Google Scholar 

  33. M. R. Heinrich, Chem. Eur. J., 2009, 15, 820; DOI: https://doi.org/10.1002/chem.200801306.

    Article  CAS  PubMed  Google Scholar 

  34. S. Brase, C. Gil, K. Knepper, V. Zimmerman, Angew. Chem., Int. Ed., 2005, 44, 5188; DOI: https://doi.org/10.1002/anie.200400657.

    Article  CAS  Google Scholar 

  35. E. F. V. Scriven, K. Turnbull, Chem. Rev., 1998, 88, 297; DOI: https://doi.org/10.1021/cr00084a001.

    Article  Google Scholar 

  36. S. S. Guong, K. W. Ding, J. H. Bu, C. X. Qu, H. L. Liu, M. Zhang, Z. X. Ge, Hanneng Cailiao [Chin. J. Energ. Mater.], 2021, 29, 1216; DOI: https://doi.org/10.11943/CJEM2021047.

    Google Scholar 

  37. M Zhang, H. L. Liu, C. Xu, K. W. Ding, S. S. Guo, C. X. Qu, Z. X. Ge, Huozhayao Xuebao [Chin. J. Explos. Propellants], 2021, 44, 610; DOI: https://doi.org/10.14077/j.issn.1007-7812.202102004.

    Google Scholar 

  38. E. Masson, X. Ling, R. Joseph, L. Kyeremeh-Mensah, X. Lu, RSC Adv., 2012, 2, 1213; DOI: https://doi.org/10.1039/C1RA00768H.

    Article  CAS  Google Scholar 

  39. K. I. Assaf, W. M. Nau, Chem. Soc. Rev., 2015, 44, 394; DOI: https://doi.org/10.1039/C4CS00273C.

    Article  CAS  PubMed  Google Scholar 

  40. W. L. Mock, N. Y. Shih, J. Org. Chem., 1986, 51, 4440; DOI: https://doi.org/10.1021/jo00373a018.

    Article  CAS  Google Scholar 

  41. D. A. Ivanov, N. Kh. Petrov, E. A. Nikitina, M. V. Basilevsky, A. I. Vedernikov, S. P. Gromov, M. V. Alfimov, J. Phys. Chem. A, 2011, 115, 4505; DOI: https://doi.org/10.1021/jp1123579.

    Article  CAS  PubMed  Google Scholar 

  42. L. S. Berbeci, W. Wang, A. E. Kaifer, Org. Lett., 2008, 10, 3721; DOI: https://doi.org/10.1021/ol8013667.

    Article  PubMed  Google Scholar 

  43. B.-H. Han, Y. Liu, Youji Huaxue [Chin. J. Org. Chem.], 2003, 23, 139; http://sioc-journal.cn/Jwk_yjhx/CN/Y2003/V23/I2/139.

    CAS  Google Scholar 

  44. A. K. Vasu, R. Khurana, J. Mohanty, S. Kanvah, RSC Adv., 2018, 8, 16738; DOI: https://doi.org/10.1039/C8RA03355B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kewei Ding or Zhongxue Ge.

Ethics declarations

The authors declare no competing interests.

Additional information

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 8, pp. 1868–1875, August, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Ding, K., Liu, W. et al. Host-aided pH-controlled substitution reaction of aryl diazonium salts and sodium azide. Russ Chem Bull 72, 1868–1875 (2023). https://doi.org/10.1007/s11172-023-3971-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3971-2

Key words

Navigation